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Statistical mechanics of vacancy and interstitial strings in hexagonal columnar crystals

Shilpa Jain and David R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 2 April 1999!

Columnar crystals contain defects in the form of vacancy-interstitial loops or strings of vacancies and
interstitials bounded by column ‘‘heads’’ and ‘‘tails.’’ These defect strings are oriented by the columnar lattice
and can change size and shape by movement of the ends and by forming kinks along the length. Hence an
analysis in terms of directed living polymers@S. A. Safran,Statistical Thermodynamics of Surfaces, Interfaces,
and Membranes~Addison-Wesley, Reading, MA, 1994!, Sec. 8# is appropriate to study their size and shape
distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in
the crystalline phase, a string proliferation transition occurs, leading to a supersolid phase@E. Frey, D. R.
Nelson, and D. S. Fisher, Phys. Rev. B49, 9723 ~1994!; see also J. Prost, Liq. Cryst.8, 123 ~1990!#. We
estimate the wandering entropy and examine the behavior in the transition regime. We also calculate numeri-
cally the line tension of various species of vacancies and interstitials in a triangular lattice for power-law
potentials as well as for a modified Bessel function interaction between columns such as occurs in the case of
flux lines in type-II superconductors or long polyelectrolytes in an ionic solution. We find that the centered
interstitial is the lowest-energy defect for a very wide range of interactions; the symmetric vacancy is preferred
only for extremely short interaction ranges.

PACS number~s!: 61.30.Cz, 61.30.Jf, 64.60.Cn
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I. INTRODUCTION

The physics of columnar crystals is relevant to the Ab
kosov lattice of flux lines in type-II superconductors a
liquid crystalline materials like concentrated phases of lo
polymers or discotics. The stability of the columnar crys
has been investigated, and various mechanisms propose
its melting. Conventional melting, which arises when phon
displacements reach a fixed fraction of the lattice const
can easily be located via the Lindemann criterion@3,4#. Melt-
ing destroys the two-dimensional crystalline order perp
dicular to the columns leading to a nematic liquid of lines
columns, which is entangled at sufficiently high densities

Crystal defects play an important role above the melt
transition. If edge dislocations in the crystal proliferate, th
drive the shear modulus to zero, leading to a liquidlike sh
viscosity. However, dislocations alone cannot destroy
sixfold orientational order of the triangular lattice in a tw
dimensional cross section. Thus, provided disclination li
do not also proliferate, the resulting liquid of lines is hexat
not isotropic@5#. The screw component of the unbound d
locations leads to entanglement. A finite concentration
unbound disclinations superimposed on the hexatic liq
leads to isotropic in-plane order.

Another kind of transition is brought about by vacanc
interstitial line defects in columnar crystals composed
long, continuous lines. As discussed in Ref.@2#, under suit-
able conditions~such as high field and small interlayer co
pling in layered superconductors!, it can become favorable
for these line defects to proliferate. If this happens at a te
peratureTd below the melting temperatureTm , then the
phase that exists betweenTd andTm will be simultaneously
crystalline and highly entangled. In the boson analogy of
aligned system of lines, where the lines represent tw
dimensional bosons traveling in the ‘‘timelike’’ axial (ẑ) di-
PRE 611063-651X/2000/61~2!/1599~17!/$15.00
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rection@3#, such a phase is analogous to the supersolid ph
of the bosonic system, which incorporates vacancies and
terstitials in its ground state. This entangled solid melts i
an entangled liquid or an entangled hexatic at even hig
temperatures.

The proliferation of vacancy or interstitial strings cou
also affect a crystal-to-hexatic transition mediated by dis
cations. Dislocations in the columnar crystalline geome
are normally constrained to lie in the vertical plane form
by their Burgers vector and theẑ axis, because a dislocatio
in a two-dimensional cross section can move along the
lumnar axis only through glide parallel to its Burgers vect
Transverse motion~climb! would require it to absorb or emi
vacancies or interstitials. This becomes possible in the su
solid phase, thus allowing dislocation loops to take on ar
trary nonplanar configurations which would have to be
cluded in the treatment of Ref.@5# to study melting out of a
supersolid phase@6#.

Vacancy and interstitial strings in a columnar crystal te
to be lines themselves because of the continuity of the
umns. If the columns are constrained to be continuous ac
the entire sample~as is the case for vortex lines in type-
superconductors!, these defects must either thread the en
sample~Fig. 1! or appear in vacancy and interstitial pai
forming loops~Fig. 2! @2#. The situation is different, how-
ever, for finite-length polymers, or columns of discotic liqu
crystal molecules which can break and reform freely.
illustrated in Fig. 3~a!, a slice through a low temperatur
configuration in a polymer columnar crystal~with transla-
tional order perpendicular to the column axis but not para
to it! would consist of tightly bound polymer ‘‘heads an
tails.’’ At higher temperatures, however, the heads and t
will separate, either moving apart to form a vacancy string
sliding past each other to form a line of interstitials@Fig.
3~b!# @7#. In columnar discotic crystals with similar transla
tional order, ‘‘heads’’ and ‘‘tails’’ are absent at low temper
1599 ©2000 The American Physical Society
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1600 PRE 61SHILPA JAIN AND DAVID R. NELSON
tures, but appear spontaneously when vacancy and inters
strings are excited~Fig. 4!. ~Head and tail defects appea
superficially like dislocations in the cross sections shown
Figs. 3 and 4. A three-dimensional analysis of lines and c

FIG. 1. Vacancy stringrd(z) ~thick dashed curve! meandering
through a columnar crystal. Dashed lines represent columns
above or below the plane of the figure.~Taken from Ref.@2#.!

FIG. 2. Vacancy-interstitial loop in a columnar crystal. Dash
lines represent columns just above or below the plane of the fig
~Taken from Ref.@2#.!
tial

n
l-

umns in neighboring sheets like that shown in Figs. 1 an
is necessary to clearly reveal that these are strings of va
cies and interstitials.!

Unlike dislocation lines, these strings~and loops! are not
constrained to be planar: the lines can jump to any neighb
ing lattice site as they traverse the crystal. Several horizo
jumps connecting a head to a tail are shown in Fig. 5. N
that leftward deflections of the vacancy segment connect
a head to a tail are accompanied byrightward deflections of
the lines or columns themselves. A typical string can be
proximated by an alternating sequence of straight segm

st

e.

FIG. 3. Formation of vacancy or interstitial strings by sliding
polymers within columns in a columnar crystal of finite-leng
polymers.

FIG. 4. Formation of vacancy or interstitial strings in a disco
columnar crystal by columns sliding past each other, or incurr
gaps.
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PRE 61 1601STATISTICAL MECHANICS OF VACANCY AND . . .
and kinks joining the head of one column or polymer ch
to the tail of another~see Fig. 6!.

These line defects are topologically stable in the~211!-
dimensional columnar geometry, as are the correspon
point defects in two dimensions. Although a line defect in
~111!-dimensional geometry would be pinched off by rela
ation of the neighboring columns into or away from it, su
relaxation is not possible in the~211!-dimensional case, a
each ~111!-dimensional plane has to stay commensur
with its neighboring planes. A translation of columns in t
neighborhood of the line defect can only translate the de
laterally.

Vacancy and interstitial strings are suppressed at low t
peratures because they have a finite line tension, and h
an energy proportional to their length. At higher tempe
tures, heads and tails can move apart, forming varia
length strings that wander or ‘‘diffuse’’ perpendicular
their length by forming kinks. These strings thus resem
living polymers @1#, except that they are directed, on ave
age, along theẑ axis. In polymer crystals, the number of su
strings is determined by the fixed concentration of heads
tails. In columnar discotic crystals, heads and tails can
created freely, and it is appropriate to treat their statist

FIG. 5. Illustration of a vacancy string~thick dashed curve!
joining a column head to another column’s tail in a columnar cr
tal composed of long-chain polymers.

FIG. 6. Schematic of a defect string~composed of straight seg
ments and kinks! wandering through the columnar crystal.
ng

e

ct

-
ce
-
e-

e

d
e
l

mechanics in a grand canonical ensemble by introducin
head and/or tail fugacity, similar to the fugacity that contro
defect concentrations in theories of vortex or dislocation
binding transitions@8#. We assume here that we can tre
polymer crystals using the same formalism provided we tu
the head or tail fugacity to achieve the fixed concentrat
determined by the mean polymer length. Long polymers
ply a dilute distribution of heads and tails. We exclude,
simplicity, the possibility of hairpin excitations in polyme
systems, which can be regarded as doubly quantized inte
tial excitations leading to a higher energy. As we shall s
the sharp defect proliferation transition discussed in Ref.@2#
is blurred when there is a finite concentration of heads
tails in equilibrium.

Given an appropriate combination of parameters, nam
low line tension combined with head and/or tail and ki
energies comparable to the temperature, the entropy of
fusion of the strings can overcome the line tension and l
to string proliferation, allowing heads and tails to separate
arbitrarily large distances. As in its bosonic counterpa
there exists off-diagonal long-range order in this phase, r
resented by

lim
ur8'2r'u→`

^c~r' ,z!c* ~r'8 ,z8!&Þ0 ~1.1!

wherec andc* are head and tail ‘‘destruction’’ and ‘‘cre
ation’’ operators@3#, implying entanglement of lines on
macroscopic scale. If defects are absent or appear onl
closed loops, the expression above will vanish asur 8'2r'u
→`. Once defects proliferate, a line can wander to any ot
column and Eq.~1.1! has a finite limit. A crystal with pro-
liferating vacancies and interstitials is an incommensur
phase—the magnitude of the smallest reciprocal vectoG
54p/A3a0 is no longer related to the areal density in t
obvious way asr5A3G2/8p2 because the density differ
from its defect-free valuer052/A3a0

2 (a0 being the lattice
constant of the triangular lattice in cross section!. All crystals
of pointlike atoms or molecules are trivially ‘‘incommensu
rate’’ in this sense—the corresponding pointlike vacanc
and interstitials proliferate at any finite temperature. It is t
anomalous suppression of vacancies and interstitials
their organization into lines at low temperatures in column
crystals that makes these materials unusual.

The discrepancy between the density of columns as
ferred from x-ray measurements of the lattice constant,
the molar concentration of the columns, gives a measur
the volume fraction of vacancy or interstitial defects in t
crystal. In experiments performed by Albouyet al. @9# on
hexagonal columnar phases of thermotropic mesogens as
cotic units, measurements indicate a significant departure
tween these two values at temperatures close to the he
→ nematic transition and above. At the transition itself, the
is a jump in the defect volume fraction of order 1/100. As t
head and/or tail fugacity of defect strings approaches infin
we expect to see a sharp second-order transition witr
2r0}T2Td @3#.

One of the conditions that makes proliferation of line d
fects energetically favorable is low shear modulus. If t
supersolid phase appears in a narrow region close to
melting of the hexagonal columnar crystalline phase, it mi
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1602 PRE 61SHILPA JAIN AND DAVID R. NELSON
appear very similar experimentally to the hexatic phase. E
dence of a hexatic phase in high-density DNA solutions
been found in experiments by Podgorniket al. @10#, using
structural probes coupled with osmotic stress measurem

In this paper we apply the physics of directed lines
vacancy and interstitial strings. With this in mind, we brie
review the elasticity theory of these systems in the next s
tion. In Sec. III we model a single string and estimate
transverse wandering. The form of this wandering is u
changed by coupling to phonon distortions of the lattice,
shown in Appendix A. So is its magnitude, as calculated
Appendix B. In Sec. IV we apply the statistical mechanics
living polymers to an ensemble of directed strings and c
culate their volume fraction, average length, etc., in the n
interacting limit. A simple quadratic-interaction model
presented in Sec. V, similar to the one discussed via
boson mapping in Ref.@3#, and we reproduce the resul
therein. Numerical calculations of the line tensions of va
ous species of defects are presented in Sec. VI. The inte
tion potentials considered are repulsive and monotonic;
study simple power laws as well as a screened Debye-Hu¨ckel
interaction. We find many metastable species of vacanc
However, the lowest-energy defect is always found to be
one with the highest symmetry in its category. For very sh
range interactions, this is the symmetric vacancy (V6),
whereas for most interactions the centered interstitial (I3) is
most favored. Appendix D contains details of the Ewa
summation calculations for the potentials considered her

II. REVIEW OF ELASTICITY THEORY

Before discussing defects in a columnar crystal, we
view the aspects of elasticity theory common to all the s
tems mentioned in the Introduction. We consider lines
columns aligned along a common direction (ẑ) up to thermal
fluctuations, with crystalline order in any cross section p
pendicular to the columnar axis. In the case of flux lines,
average direction of alignment is imposed by an exter
field (H5H ẑ) and local deviations from this direction co
energy. With columnar crystals of long-chain molecu
composed of covalently bonded nematogens or disk-sha
molecules cylindrically stacked via hydrogen bonds, or a
phiphilic molecules in cylindrical micellar aggregates, t
columnar axis represents spontaneously broken rotati
symmetry. Therefore local deviations from the alignment
rection are not penalized, but undulations of the column
The rotational symmetry can, however, be broken by imp
ing an external field. In addition, the two-dimensional cry
talline order resists shear and areal deformations perpend
lar to theẑ axis.

Low-energy fluctuations of the system can be descri
by a ‘‘continuum’’ model that works for small-amplitude
long-wavelength deformations@11,3,12#. The important fluc-
tuations in this limit can be characterized by a tw
dimensional~2D! displacement fieldu(r' ,z), representing
the average deviation of lines in the (x,y) plane in a small
region centered at (r' ,z). With it can be associated a loca
areal density changedr/r052“'•u (r052/A3a0

2) and a

local nematic directorn̂5 ẑ1t, with t[]u/]z. The free en-
i-
s

ts.
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ergy of the system is a sum of nematic and crystalline c
tributions:

F5Fnematic1Fcrystal . ~2.1!

To the lowest order in the fluctuations, these are given b

Fnematic5
1

2 E d3r @K1~“'•t!21K2~“'3t!21K3~]zt!
2#

~2.2!

and

Fcrystal5E dzE d2r'Fm ui j
2 1

1

2
l S dr

r0
D 2G , ~2.3!

where K1 , K2, and K3 are the Frank constants for spla
twist, and bend, respectively, andl and m are the Lame´
coefficients. The matrixui j 5(] iuj1] jui)/2 is the linearized
2D strain field. In the presence of an external fieldH ẑ, one
should add toF

Fext5
1

2
xaH2E dzE d2r'utu2, ~2.4!

wherexa is the anisotropic part of the susceptibility@12#.
The last two contributions toF are quadratic in the de

rivatives, and can be rewritten as

Fcrystal1Fext5
1

2 E d3r @c11~“'•u!21c66~“'3u!2

1c44~]zu!2#1~surface terms! ~2.5!

wherec11[l12m, c66[m, and c44[xaH2r. The surface
terms become important when there are defects within
bulk of the crystal, like vacancy and interstitial strings, re
resented by cuts joining column-end singularities in the fi
u(r' ,z). Evaluating these terms over a cylindrical surfa
enclosing such a string yields the energy cost of the de
string: a line tensiontz'ma2 due to the elastic distortion
around the string, in addition to a core energyEc per unit
length ~of the same order of magnitude! within the cylindri-
cal core.

Fnematic can be further simplified if, as is often the ca
with nematic polymers, the splay and twist constants
small in comparison to the bend constant. Specifically, ifK1

andK2 satisfyK1,2a0
21/AK3c11!1 @4#, then they can be ne

glected. For long-wavelength distortions along the colum
axis, the dominant free energy contribution is thenK3(]z

2u)2

in the absence of an external field.K3 can be simply related
to the persistence lengthl P of the polymer asK35kBTlPr.

The statistical mechanics of defects in polymer liqu
crystals has been discussd in detail by Selinger and Bruin
@13,14#. The presence of defects imposes a deformation
the T50 equilibrium configuration. In the case of a sem
infinite vacancy or interstitial string with a head or tail at th
origin, this distortion follows from minimization of the free
energy above with respect tou(r' ,z) under the constraint

“'•u56r0
21d~r'!u~z!1~nonsingular terms!, ~2.6!
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PRE 61 1603STATISTICAL MECHANICS OF VACANCY AND . . .
where the6 sign refers to a column tail or head located
the origin. Since the planar distortion about a string has
muthal symmetry in the continuum approximation,“'3u
50. Hence, the only relevant terms in the free energy are
bend and bulk distortion terms~neglecting splay!. The result-
ing distortion around the column end spans a parabolic
gion about the radial direction~see Fig. 7! defined by

z2&lLr' ~2.7!

wherelL5AK3 /c11 is the length scale relating the disto
tions parallel and perpendicular toẑ.

Selinger and Bruinsma also calculate the interaction
ergy between two column ends by superimposing the dis
tion created by each. They find the interesting result tha
head and tail in anematicmedium attract weakly if they fal
within each other’s region of influence, as just described,
repel otherwise. However, in a columnar crystal~with non-
zero shear modulus!, the interaction is always a strong attra
tive linear potential due to the finite line tension associa
with the string of distortions joining a head to a tail.

III. WANDERING OF A SINGLE STRING

Consider a single vacancy or interstitial string in a he
agonal columnar crystal of, say, polymer strands with latt
constanta0 and monomer spacingc along the columnar axis
ẑ. For a discotic columnar liquid crystal,c is the spacing
between oblate molecules along the column axis. For a
line in a layered type-II superconductor with magnetic fie
perpendicular to the layers,c is the layer spacing. If the
string is vertical, the energy per unit lengthtz is of the order
of ma0

2 ~see Sec. II! wherem is the in-plane shear modulus o
the crystal. For a horizontal string,t'5«k /a0 where the
kink energy«k;k1/4m3/4a0

2 @3#, k[K3 /r being the bending
rigidity. The ratio ist' /tz;(k/m)1/4/a0; l * /a wherel * is
the kink size. Typicallyl * @a0, so that the strings are pre
dominantly vertical, with few kinks. For flux lines, on th
other hand, the kink energy isg1/2m1/2a0 with g[c44/r,
wherec44 is the tilt modulus andr is the areal line density
The ratio is then (g/m)1/2/a0 . In highly anisotropic layered
superconductors, this ratio can be small, favoring lar
nearly horizontal defect excursions. We will for now wo
with nearly vertical strings, allowing for a gas of kinks su
ficiently dilute so that the interaction between kinks can
ignored ~see Fig. 6!. We thus assign to a string of vertica
extent l and nk kinks an energyl t1nk«k12«0 where t

FIG. 7. Distortion induced by a column end in the neighbori
columnar crystalline matrix. The distortion is confined to a verti
extentuzu,AlLr' ~shaded region! around the column end.
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[tz and«0 is the energy of a polymer end. We expect th
the results for defects with a high density of kinks would
qualitatively similar.

In units such thatkB51, the partition function of a string
of length l is

Z15~11qe2«k /T! l / l* e2 l t/T, ~3.1!

where T is the temperature, andq is the two-dimensional
coordination number of the lattice on which the defect str
lives — for a symmetric vacancy this is the same as tha
the original triangular lattice,q56, whereas for a symmetric
interstitial it is that of the dual honeycomb lattice,q53 ~see
Sec. VI!. The above expression represents the freedom of
string to jump to any of the neighboring lattice sites an
where along its length. These transverse meanderings c
an entropic lowering of the free energy per unit length of t
string:

f 15 lim
l→`

2T ln Z1/ l 5t2
T

l *
ln ~11qe2«k /T!

.t2
Tq

l *
e2«k /T for e2«k /T!1. ~3.2!

If Nk is the total number of kinks, the average kink density

nk[
^Nk&

l
5

1

l *

qe«k /T

11qe«k /T
.

q

l *
e2«k /T for e2«k /T!1.

~3.3!

Thus, kinks are on the averagel k5 l * e«k /T/q monomers
apart. The assumption of dilute kinks then translates into
condition l * nk!1, or «k@T, which can be rephrased a
^uuu2&/a0

2!1 @3,4#, a condition clearly satisfied by a crysta
below its Lindemann melting point.

The above is a ‘‘diffusive’’ model for the string—ifd
denotes the horizontal end-to-end displacement, the m
square wandering iŝudu2&52Dl , where the ‘‘diffusion con-
stant’’ D is given by 2D5a0

2nk . Consider a continuum de
scription of the string in terms of a functionrd(z), rd(z)
being the transverse displacement. Provided the ave
slopeudrd /dzu is small, this ‘‘diffusive’’ wandering will cor-
respond to an effective Hamiltonian of the form

H15E
0

l

dzFg

2 Udrd

dzU
2

1tG , g5
T

D
. ~3.4!

The continuum approximation to the free energy is appro
ate in the limit of largel, since a line subject to kink excita
tions is always above its roughening transition.

Here we have assumed that the string is wandering wi
a frozen crystal. However, the lattice around the vacancy
interstitial string responds to its presence by collapsing
expanding around it. For a straight string atrd50, the defor-
mationu(r' ,z) is given by

ud~r' ,z!56
V

2p

r'

r'
2

~3.5!

l
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1604 PRE 61SHILPA JAIN AND DAVID R. NELSON
in the continuum description of the crystal, that is, aw
from the defect where the deformations are small.V is the
area change due to the vacancy or interstitial,V.a0

2 . The
energy of this deformation has to be included in the ene
cost of the defect string. Again invoking the continuum a
proximation, we assume that for a defect string with sm
average slope, the resulting deformation away from
string in any plane perpendicular toẑ will be approximately
that resulting from a straight string at the location of t
defect in that plane:

u~r' ,z!.ud„r'2rd~z!,z…. ~3.6!

@In general u(r' ,z) would depend on the derivatives o
rd(z) as well.# Within this approximation, the distortion en
ergy of the crystal with bending Frank’s constantK3
[TlPr is, keeping terms up to fourth order in the derivativ
~see Appendix A!,

DH1

T
; l PE dzFUd2rd

dz2 U2

,a0
22Udrd

dzU
4G . ~3.7!

These impart an effective stiffness to the defect string
suppress transverse fluctuations over a length s
;a0ADK3 /T;a0Al Pnk. However, they do not change th
long-scale diffusive nature of the string.

The lattice distortions renormalize the diffusion consta
of the string when the symmetry direction of the crystal
externally imposed, as in the case of flux lines, or in a po
mer crystal with an external field along theẑ direction. The
tilt modulusc44 is then nonzero@Eq. ~2.4!#, andD is renor-
malized toDR , where~see Appendix B!

1

DR
.

1

D
1OS c44

Tr D . ~3.8!

For a dense vortexliquid this effect has been analyzed
detail by Marchetti@15# andD is found to be renormalized to
a value independent of its bare value in the long-wavelen
limit. The correction comes from convection of a tagged fl
line along the local tangent-field direction.

If a similar calculation is carried out for acrystalof spon-
taneously aligned long semiflexible polymers~see Appendix
B!, one finds a qualitatively different renormalization
D—the correction in the long-wavelength limit is propo
tional to its bare value, anddD/D;1.45̂ uuu2&/a0

2&3% us-
ing cL

2.1/50 @16# (cL is the Lindemann constant for meltin
of a columnar crystal!. The correction is negligible. It can b
ignored for another reason—the idea of convection of a
by the mean local field, although appropriate for a de
fluid, would not be applicable in a crystalline environme
where diffusion can only occur through discrete jumps fro
column to column. Although thermal fluctuations are alrea
implicit in the exponential factor inD5a0

2nk/2 coming from
nk , defects in this case move only on a discrete lattice, w
out phonon fluctuations.

To summarize this section, we characterize the statist
mechanics of a defect string with a head or tail energy«0, a
y
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line tensiont, and a diffusion constantD. The latter two can
be combined in an effective chemical potentialm̄[Tmd per
kink size (l * ) of the string:

md5 l * ~2t/T1nk!5qe2«k /T2«k /T, ~3.9!

with nk related toD throughD5a0
2nk/2. Becausenk is ex-

ponentially small,md'2 l * t/T'2 l * ma0
2/T and is usually

negative, which suppresses long vacancy and interst
strings. Turning it positive would require raising the tem
perature and lowering the kink energy«k , and is favored by
a larger coordination numberq.

Although we have assumed a constant shear modulus
presence of the defects themselves can drive it down ex
nentially with the defect concentration, as discussed by C
ruzzo and Yu@17#. Thus, positivemd becomes possible whe
softening of the bare elastic constants with increasing de
concentration is taken into account.

IV. STATISTICAL MECHANICS
OF NONINTERACTING STRINGS

At any finite temperature, a crystal with a negative stri
line chemical potential will contain a distribution of the
mally excited vacancy and interstitial strings. Since the str
energy is proportional to length in the noninteracting-kin
approximation, the equilibrium probability distribution wi
be an exponentially decaying function of length with me
determined by the line chemical potential, in the dilu
string-gas limit where interstring interactions can also be
glected@1#. In discotic crystals string heads and tails can
created as necessary. In a crystal of long polymers, the n
ber of heads and tails is fixed by the mean polymer leng

Let N be the total number of possible kink sites in th
lattice,N5volume3r/ l * , and letPl be 1/N3 the number of
defect stringsl links long. Assuming that only one kind o
defect string is present—those with the lowest li
tension—we can write the defect-free energy in terms
$Pl% as @1#

Fd~$Pl%!5(
l

NPl~2«02 lTmd!1T(
l

NPl~ ln Pl21!.

~4.1!

Minimizing with respect to the$Pl% yields the expected ex
ponential distribution:

Pl5h2zl , ~4.2!

where z5emd, and the head or tail fugacityh5e2«0 /T is
expected to be small. For hexagonal columnar crystals
polymers, we work in a grand canonical ensemble and adj
«0 so that the average head or tail concentration agrees
the fixed value determined by the mean polymer length. T
head or tail concentration will be small if the polymers a
long. Fordiscotic crystals, the grand canonical ensemble
the natural one and the head or tail concentration fluctua
with an average value determined by the fixed value oh
5e2«0 /T, and the monomer fugacityz5emd,1. The net de-
fect volume fractionf is

f[(
l

lPl5h2
z

~12z!2
. ~4.3!

The total number of stringsNd[Nns is given by the string
density
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ns[(
l

Pl5
h2

12z
. ~4.4!

A defect monomer is most likely to be found in a string
mean length~in units of the kink size!

l m5
1

umdu
. ~4.5!

The length distribution has an average at 2l m , and a spread
also of A2l m . The form ~4.1! of the energy, linear inl, is
really applicable only whenl @1, so that end effects can b
parametrized by thel-independent constant«0 . Then,md is
close to 0, and the relationf.nsl mp holds. The asymptotic
behaviors in the dilute and dense limits are as follows:

f5H h2emd, z!1

h2

umdu2
, z&1,

~4.6!

ns5H h2, z!1

h2

umdu
, z&1.

~4.7!

A string proliferation transition thus occurs atmd50 in
this model, corresponding to a temperatureTd5t l k . In the
limit «0→`, it corresponds to the appearance of a supers
phase@2# that is simultaneously crystalline and entangle
where infinitely long vacancy and/or interstitial strings faci
tate the wandering and entanglement of lines in the crys
line phase. If the melting temperatureTm.Td , this super-
solid or incommensurate solid phase will exist betweenTd
andTm .

The noninteracting approximation breaks down in the
cinity of Td as calculated here, and its estimate will have
be refined by including interactions. For finite«0, the sharp
transition discussed in Ref.@2# will be blurred, as discusse
in Sec. V.

V. f2 INTERACTION MODEL

Interactions between polymer ends in a columnar cry
have been calculated by Selinger and Bruinsma@13# within
the continuum approximation. Because of the uniaxial
isotropy, the interaction has a rather complicated form. T
distortion due to an isolated head or tail placed at the or
at in-plane distancer' extends over a vertical extentuzu
;AlLr' wherelL5AK3 /c11 @see Eq.~2.7!#. The resulting
interaction between heads and tails falls as 1/uzu3 for pre-
dominantly vertical separationsz (uzu@AlLr'), and as
21/(lLr')3/2 for predominantly horizontal separationsr' .
In polymer crystals, these contributions must be super
posed on the linear energy cost of the vacancy or interst
string joining them.

At low defect densities where the string length is mu
smaller than the average separation of string centers of m
we have 1/umdu!1/f1/3, i.e., umdu@h2/3, and a string interacts
with other strings as a head-tail dipole. The effective int
action between dipoles then falls off very rapidly, becomi
id
,

l-

-
o

al

-
e
n

-
al

ss,

-

short ranged not only in the axial but also in the radial
rection.

At the other extreme, the strings are long, which wou
happen in the vicinity of the head-tail unbinding transitio
and in the supersolid phase itself. End interactions can t
be neglected and the remaining interaction between ef
tively infinite strings becomes predominantly ‘‘radial’’~i.e.,
perpendicular toẑ) provided the root mean square tilt wit
respect to theẑ axis is small. The defects are then noninte
acting in the continuum model unless their anisotropy
taken into account. The interaction between defects w
n-fold symmetry (n52, 3, or 6! falls off at least as fast as
1/r n ~see Appendix C!. This interaction has an azimutha
dependence of the form cosnu or higher harmonics. The an
gular average vanishes, leading to an effective interac
that vanishes as an even higher power, which is effectiv
short-ranged. As mentioned in the Introduction, the lowe
energy vacancy or interstitial defects for simple repuls
pair potentials in the radial direction are in fact of hig
~threefold or sixfold! symmetry.

We discuss here the simplest model for a short-ran
interaction—a repulsivef2 model that has been treated ea
lier in Ref. @3# using a coherent state path integral repres
tation that exploits an analogy with the quantum mechan
of two-dimensional bosons. The defect volume fractionf
corresponds to the mean square boson field amplitude^ucu2&
in that description. Here, we reproduce the essential res
without resorting to the sophisticated boson formalism. Up
adding a termuf2/2 to the free energyf [F/NT in Eq. ~4.1!
of the previous section, we find after minimization,

Pl5h2el (md2uf). ~5.1!

As discussed in Ref.@3#, the couplingu is an excluded vol-
ume parameter describing defect line repulsion. Thusf and
Nd have the same form as before, but withz replaced by an
effective fugacityz:

z→z~z,f![ze2uf, ~5.2!

so that

f~h,z!5h2
z

~12z!2
. ~5.3!

The volume fractionf(h,z) now has to be solved for self
consistently from Eq.~5.3!. Note that the effective chemica
potential has been reduced byuf due to the repulsive inter
action:

me f f[ ln z5md2uf. ~5.4!

Accordingly, the mean string lengthl m changes to

l m52
1

ln z
[

1

uf2md
. ~5.5!

The free energy of the distribution isf '2uf2/2.
The behavior of the string volume fraction forh50 and

hÞ0 is illustrated schematically in Fig. 8. Four distinct r
gimes emerge, with the following asymptotic behaviors.

~1! For md!21 ~point A in Fig. 8!,
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f.h2emd, ns.h2, l m5
1

umdu
. ~5.6!

This is again the dilute limit where heads and tails are tigh
bound.

~2! For 21!md!2(uh2)1/3,

f.
h2

umdu2
, ns.

h2

umdu
, l m5

1

umdu
. ~5.7!

These results are again identical to those for noninterac
strings. This correspondence is expected, becauseumdu
.(uh2)1/3.uf; therefore the effective chemical potential
still approximatelymd . The relationmd;2(uh2)1/3 marks
the limit of validity of the noninteracting approximation, a
we argued in the beginning of this section. As we appro
this limit, we find for h→0, f,ns→0, whereasl m→`.
Thus, the strings are still dilute, although lengthening. N
that the results in this regime coincide with those of Ref.@3#
in the limit of short and dilute strings.

~3! umdu!(uh2)1/3[mc (md around the transition which
occurs forh50),

f.
h2

umcu2 F11
2

3

md

mc
G , ns.

h2

umcu
F11

1

3

md

mc
G ,

~5.8!

l m.
1

umcu
F11

1

3

md

mc
G .

These results can be matched onto those in the noninte
ing regime above by replacingmd with

me f f52mc1md/352mcS 12
md

3mc
D , ~5.9!

which is now dominated by the repulsive interaction:me f f
'2uf. The unphysical divergences of the noninteract
model have been suppressed and we find at the trans
point

FIG. 8. The volume fractionf is plotted against the effective
defect chemical potentialmd for the f2 interaction model of a gas
of defect strings. The strings are short and dilute in regime A,
long, dense, and entangled in regime B.~Taken from Ref.@3#.!
y

g

h

e

ct-
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f5
h2/3

u4/3
, ns5

h4/3

u1/3
, l m5

1

u1/3h2/3
. ~5.10!

Note that all quantities have interesting singularities in
limit h→0.

If the head or tail fugacityh is small, the defect volume
fraction remains negligible at the transition, but the avera
string length grows large so that it could become greater t
the interstring separation, now given by 1/f1/2. Indeed,
1/f1/2! l m if h!1/u2, which would be true if polymer ends
are highly unfavorable.

This long and dilute regime interpolates between the sh
and dilute and the long and dense limits described in R
@3#.

~4! For md@mc ~point B in Fig. 8!, we have

me f f52mcAmc

md
. ~5.11!

The repulsion now keeps in check the string proliferatio
andme f f approaches 0 as 1/Amd. Thus,

f.
md

u
, ns.hAmd

u
, l m.

1

umcu
Amd

mc
. ~5.12!

This is the phase where strings are dense and entangledf
is O(1). These results also agree with Ref.@3#.

As the head or tail fugacityh→0, the intermediate regime
~3! above~aroundm50! shrinks to zero. Ath50, heads and
tails are completely expelled, and we have a second-o
phase transition atmd50 with f50 for md,0, and growing
asmd for md.0, as in Ref.@3#. This limit corresponds to the
situation in thermally excited vortex lattices@2# because flux
lines cannot start or stop within the sample. In the bos
picture, h acts like an external field coupled to the ord
parameter, injecting magnetic monopoles into the superc
ductor.

We have neglected vacancy and interstitial loops, wh
exist even in the limith→0. For finiteh, their contribution
can be neglected near the transition because for long lo
the energy of a loop exceeds the energy of a string of
same vertical extent: Whereas a string of lengthl has energy
l t interstit ial12«0 ~we expect interstitials to be the preferre
defect at the transition in most cases!, the energy of a
vacancy-interstitial loop of the same length would be a
proximatelyl (tvacancy1t interstit ial). For largel, the differ-
encel tvacancy22«0 will strongly suppress vacancy and in
terstitial loops. Because of this energetic barrier, loo
cannot become arbitrarily large, and cannot cause entan
ment over macroscopic scales. Forh50, as is the case fo
vortex matter, fluctuations in the low-temperature phase
entirely in the form of loops@2#, and similar to vortex ring
fluctuations in the Meissner phase.

For systems with a finite axial length, the balance may
tilted in favor of long strings because the end penalty
removed if the ends move to the surface and the str
threads the sample. For threading strings the expression
entropy in Eq.~4.1! is no longer valid because the freedom

t
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the z direction is lost. The remaining two-dimensional e
tropy can be ignored in a three-dimensional system, and
are left with

f .2mdf1uf2/2, ~5.13!

wheref now is also the areal fraction of defects; and o
finds f.md /u, similar to region~4! discussed above.

VI. NUMERICAL CALCULATION OF DEFECT
LINE TENSIONS

Line tension calculations require that we find the lowe
energy lattice deformation associated with a vacancy or
terstitial. These line tensions depend on thetypeof vacancy
or interstitial, e.g., whether the defect sits in an environm
which is two-, three-, or sixfold symmetric. If thermal fluc
tuations out of this configuration are small enough to
described within a quadratic approximation, they decou
from the equilibrium configuration. Since theseT50 equi-
librium defect configurations are composed of straight c
umns, the three-dimensional deformation energy can be
duced to an effective two-dimensional interaction ene
V(r ) per unit length between columns separated by dista

FIG. 9. Various defects obtained in a two-dimensional triangu
lattice. The centered interstitial is the only stable interstitial defe
e

-
-

t

e
le

l-
e-
y
ce

r. The calculations can then be performed on a tw
dimensional triangular lattice of points interacting with p
tential V(r ). Thus, the defect energies in a two-dimension
Wigner crystal of electrons@18# would correspond to theline
tensionsof the corresponding string defects in a hexago
columnar crystal of lines interacting with an effective rad
1/r potential per unit length.

Such calculations have been carried out by several aut
@2,18,19#. Whereas Refs.@18# and @19# have considered de
fects in a Wigner crystal of electrons„Vp(r )51/r …, Frey
et al. @2# have studied a modified Bessel function potent
Vk(r )5u0K0(kr ) in the k→0 limit. Herek[l21, wherel
is the Debye screening length in the case of long polye
trolytes in an ionic solution, and the London penetrati
depth in the case of vortex lines in a type-II superconduc
The limit k→0 corresponds to a long-range logarithmic i
teraction, whereas in the short-range limitka0@1 the inter-
action is exponentially decaying. Both Refs.@2# and @19#
dealt with long-range interactions (lnr and 1/r , respectively!,
and found that the centered interstitial~see Fig. 9! has the
lowest line tension. We denote the centered interstitial by
or by I3 when we want to stress its threefold symmetry. T
edge interstitial~denoted EI or I2) was found to be a saddl
point and buckled into a CI. The threefold symmetric ce
tered interstitial CI is the lowest-energy interstitial defe
over the entire range of interactions we studied. Among
vacancies, the twofold symmetric crushed vacancy~denoted
V2 or V2a — see Fig. 9! is the only stable one, the symmetr
sixfold vacancy (V6) being unstable to it. The long-rang
interactions between the energetically preferred types of
terstitials and vacancies were found to be attractive for in
stitials and repulsive for vacancies.

To determine the correct type of microscopic defect
insert into the phenomenological considerations of Se
III–V, we have extended the work of Freyet al. to the short-
ranged regime of theK0(kr ) interaction, to which end we
studied values ofka0 from 0 to 7 ~7 being large enough to
represent the short-rangeka0→` limit ! ~Fig. 10!. The aim
was to determine the point of crossover from centered in
stitials to vacancies as the lowest-energy defect, since

r
t.

FIG. 10. Defect energy as a function of the screeningka for
V(r )5K0(kr ) at system sizen54 (N5480). Only the centered
interstitial is shown, because the edge interstitial is always unst
to it. Various species of vacancies exist, within limited parame
ranges, very close in energy. Lines joining the data points are o
an aid to the eye.
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known from simulations of short-range interactions~for a
review, see Ref.@20#! that vacancies are preferred in th
limit. In the same spirit, we have also extended the Coulo
interaction to power-law interactions 1/r p with exponent val-
ues ranging fromp50 (; ln r) to p512 ~Fig. 11!.

We checked our minimization procedure by first rep
ducing the results of Refs.@2# and @19# for ln r and 1/r po-
tentials, respectively. As we move away from the long-ran
interaction limit ka50, the metastable crushed vacan
(V2a) exchanges stability with the metastable split vacan
~SV!, also of twofold symmetry. Two metastable species
threefold symmetric vacancy (V3) and a two-fold symmetric
vacancy (V2b) crushed along the basis vector of a triangu
unit cell, also exist, but are of higher energy. The differen
in energy can be as small as one part in a few thousand
the interaction gets shorter ranged, V2b loses stability to V3
at ka0.5.2, and the threefold deformation of V3 gets
smaller so that it transforms continuously into V6 at ka0
.5.9. When V6 appears, the SV also loses stability to it. B
the time I3 and V6 finally cross in energy, V6 is the only
stable vacancy left. The crossing happens at surprisin
large parameter values,ka0.6.9 for Vka ~Fig. 12!, and
p.5.9 for Vp ~Fig. 13!, each very close to the short-rang
limit. We thus find that the interstitial has a very wide ran
of stability, extending well into the short-ranged regime.

Following previous authors, the simulations were p
formed in an almost square~length-to-width ratio 5:3A3!
cell containing N55n36n530n2 lattice points with n
5125 @rather than a more nearly square but bigger re
angle of, say, 7n38n (7:4A3), which would allow us to
sample a smaller number of system sizesn with a given
computational limit onN#. Figure 9 corresponds ton53.

A defect is introduced by adding or removing a partic
and then allowing the resulting configuration to relax. T
difference between the energies of the relaxed defect c
figuration and the perfect lattice configuration gives the
ergy of the defect. There are two modifications to this sim
calculation. We want the defect energy corresponding to
physical conditions of constant chemical potential or li
density, so we rescale the cell dimensions~by changing the
lattice constanta0) after inserting the defect to restore th

FIG. 11. Defect energy as a function of the powerp for V(r )
51/r p at system sizen55 (N5750). The apparent increase
energy withp ~interaction getting shorter ranged! would go away
with proper normalization of the potential. Lines joining the da
points are only an aid to the eye.
b
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e

y
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system to its original density~following Ref. @19#!. More-
over, since we would ideally like to study an infinite syste
the large but finite cell containing 30n2 particles is assumed
to be repeated in all directions, so that we are effectiv
dealing with a periodic array of defects, or an infinite latti
in the absence of a defect. The periodic boundary conditi
maintain the average line density during the relaxation p
cess. However, now the energy per cell also includes
energy of interaction of a defect with all its periodic image
As discussed earlier, this energy is finite, and by extrapo
ing its dependence on cell sizen, i.e., interdefect separatio
('5n), to largen, the energy of an isolated defect can
extracted@2,19#.

For short-ranged interactions, the energy calculation
be simplified. We introduce a cutoff interaction radiusr c
where the interaction falls to a small fraction of its neare
neighbor value. The interaction with the particles outside c
be approximately accounted for by assuming a uniform d
sity outside and integrating over it. The radiusr c is chosen to
make this correction small compared to the total energy, s
less than 1023 of it. Interactions within the shell are calcu
lated explicitly. As long asr c,L/2, L being the cell width,
this short-range method should be very accurate.

For long-ranged interactions such as lnr, 1/r , or 1/r 2, the

FIG. 12. Defect energies forV(r )5K0(kr ), n54, on the log
scale, with respect to V3 or V6, in order to illustrate the detailed
structure of the energy diagram. The CI can be seen crossing V6 at
ka'6.9. Lines joining the data points are only an aid to the ey

FIG. 13. Defect energies forV(r )51/r p, n55, on the log scale,
with respect to V3 or V6 . The CI and V6 cross atp'5.9. Lines
joining the data points are only an aid to the eye.
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TABLE I. Defect energies forV(r )5K0(kr ); a051; system sizen54 (N5480). The upper part
corresponds to the Ewald sum method for long-range interactions, the lower part to a simple cutoff m
for short-range interactions. The centered interstitial and the symmetric vacancy cross atka'6.9. Entries
such as ‘‘V2a , ’’ ‘‘SV,’’ ‘‘V 3,’’ and ‘‘V 6’’ indicate an instability to a lower-energy defect.

ka I3 SV V2a V3 V2b V6

0 0.073016802 V2a 0.107018876 0.108206944 0.109320135 V3

1 0.066331581 0.096728537 0.096661116 0.097578530 0.099169907 V3

2 0.050588818 0.072306827 0.072341149 0.072594220 0.073852944 V3

3 0.033575192 0.046095915 SV 0.046131759 0.047174061 V3

4 0.020037313 0.025980648 SV 0.025962421 0.026641900 V3

4 0.020036 0.025980 SV 0.025961 0.026641 V3

5 0.0110170 0.0133112 SV 0.0133146 0.0136217 V3

5.1 0.010338333 0.012397139 SV 0.012400742 0.012674362 V3

5.2 0.009695442 0.011537972 SV 0.011541059 V3 V3

5.3 0.009087036 0.010731274 SV 0.010733113 V3 V3

5.4 0.008511788 0.009974612 SV 0.009974441 V3 V3

5.5 0.007968369 0.009265581 SV 0.009262603 V3 V3

5.6 0.007455456 0.008601808 SV 0.008595187 V3 V3

5.7 0.006971737 0.007980968 SV 0.007969812 V3 V3

5.8 0.006515917 0.007400791 V3 0.007384121 V3 V3

5.9 0.006086722 V6 V6 V6 V6 0.006835768
6 0.005682901 V6 V6 V6 V6 0.006322377
7 0.002788486 V6 V6 V6 V6 0.002771295
a

ar
ve

u
tl

ot

c-
-
is
ve-

II
above method breaks down, and we must resort to the Ew
summation technique@21,22#, which yields an effective two-
particle interaction that includes the interaction of one p
ticle with all the periodic images of the other. This effecti
potential consists of a real space sum~corresponding to a
screened interaction! and a reciprocal space sum~corre-
sponding to the screening charge!. The division between the
two is controlled by an Ewald parameter, and by a judicio
choice of its value, the interaction can be made sufficien
short ranged for both sums. We then employ cutoffs in b
ld

-

s
y
h

spaces, with values determined by the desired precision~see
Appendix C for details!.

To find the minimum of the interaction energy as a fun
tion of the configuration ofN particles, we use the conjugate
gradient method@23#. The forces are also needed for th
method, and are easily derived from the energy and con
niently calculated along with it.

The results forn54 ~480 particles! for Vka and for n
55 for Vp ~750 particles! are shown in Tables and I and
and Figs. 10 and 11. (n55 was computationally prohibitive
-
ss at
TABLE II. Defect energies forV(r )51/r p; a051; system sizen55 (N5750). The Ewald sum tech
nique was used to calculate the energies. The centered interstitial and the symmetric vacancy crop
'5.9. Entries such as ‘‘V3’’ and ‘‘ V6’’ indicate an instability to a lower energy defect.

p I3 SV V2a V3 V2b V6

0 0.073061685 V2a 0.106775085 0.108253779 0.108994418 V3

1 0.146421440 V2a 0.209046876 0.209331872 0.213568209 V3

2 0.487928019 0.677444176 SV 0.672359275 0.694143882 V3

3 1.08543992 1.39071722 SV 1.38704618 1.42628053 V3

4 1.99663790 2.37494467 SV 2.37649196 2.43341170 V3

5 3.2620983 3.5889518 SV 3.5851010 V3 V3

5.8 4.5498400 V6 V6 V6 V6 4.6053332
5.9 4.7286554 V6 V6 V6 V6 4.7341340
6 4.9114956 V6 V6 V6 V6 4.8637723
7 6.9642383 V6 V6 V6 V6 6.1999848
8 9.4317462 V6 V6 V6 V6 7.5920876
9 12.319586 V6 V6 V6 V6 9.0220754

10 15.629229 V6 V6 V6 V6 10.477581
11 19.359421 V6 V6 V6 V6 11.950259
12 23.495660 V6 V6 V6 V6 13.434556
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for the long-ranged regime withka0.0). Note that, for the
screened Bessel function interaction, we find that calcu
tions optimized for the long- and short-ranged regimes ag
to within 1 part in 20 000 atka054. Moreover, we find that
the interaction of a defect with all its periodic images
repulsive for defects with~even! two- and sixfold symmetry,
and attractive for~odd! threefold symmetry, consistent wit
Ref. @2#. As discussed in Refs.@2# and @19#, the true
asymptotic form of the power-law defect interaction pro
ably is not reached for the distance scalesr;20230 lattice
spacings studied here.

VII. CONCLUSIONS

We have studied factors contributing to the wandering
a vacancy or interstitial string defect in a hexagonal colu
nar crystal. A gas of such strings in the crystalline pha
interacting via short-range potentials, can proliferate via c
tinuous or first-order transitions when the corresponding
fect chemical potential changes sign, leading to a supers
phase. The transition can be modified by the presenc
vacancy or interstitial loops, especially in a system of fin
thickness. We have also numerically calculated defect
tensions for two families of line interactions which interp
late between long- and short-ranged interaction potentials
each case, we determine the point where interstitial and
cancy defects exchange stability. A complete accounting
quires consideration of a variety of nearly degenerate
cancy configurations. At finite temperatures, the sm
energy differences between different species will furth
lower the free energy of the vacancy through a gain in fl
tuation entropy. The interstitial itself can fluctuate betwe
the centered and edge configurations. The point where
cancies and interstitials exchange stability will shift at fin
temperatures due to entropic effects of this kind. In the c
text of long-range potential calculations, we show in Appe
dix D how to extend the Ewald summation to the modifi
Bessel function potentialK0(x).
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APPENDIX A: CALCULATION OF ENERGY
OF DISTORTION DUE TO A DEFECT STRING

As described in Ref.@13#, minimization of the free energy
~2.1! with the constraint~2.6! yields the following equation
for u(r' ,z):

lL
2]z

4u2“'~“'•u!5
1

r0
“'d~r'2rd!, ~A1!

rd being the in-plane location of the defect string~assumed
straight for now!. Upon assuming a solution of the formu
52(1/r0)“'c, we have the scalar equation

~2lL
2]z

41¹'
2 !c5d~r'2rd!. ~A2!
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c~r' ,z!} lnur'2rdu, or u~r' ,z!}
r'2rd

ur'2rdu2
, ~A3!

with proportionality constant;a0
2 .

Now consider a wandering string with a dilute concent
tion of kinks, described on average byrd(z) ~see Fig. 1!.
Upon inserting thisz dependence into the right hand sid
~RHS! of Eq. ~A2!, we see that the resultingc inherits the
fluctuations ofrd(z). If l z represents the smallest waveleng
in rd(z), the two terms on the LHS of Eq.~A2! compare as
lL

2/ l z
4 vs 1/a0

2 , or asl * vs l z wherel * 5AlLa0 is of the order
of the kink length. Since the meandering of the defect str
occurs on a length scale much larger than the kink size,
first term should be negligible compared to the second,
we can set

c~r' ,z!} lnur'2rd~z!u ~A4!

as a reasonable approximation.
The elastic energy of a defect of lengthL can now be

written as

Ede f ect5tzL1«kE dz

a0
Udrd~z!

dz U1 1

2E8
d3r K 3S ]2u

]z2D 2

,

~A5!

representing contributions from line tension, kinks, and
bending energy of the distorted crystal~zero for a straight
string!. The primed integral here excludes the core of t
string: a region of radius;a0 around it. It can easily be
evaluated foru(r ,z)5ud„r'2rd(z),z… and reduces to the
form in Eq. ~3.7!, accurate up to fourth order in the deriva
tives. The second term, on the other hand, leads to the t
(g/2)*dzudrd /dzu2 in Eq. ~3.4!. For long wavelengths, the
additional contribution from the third term is irrelevant
comparison, being of higher order in the derivatives. T
length scale at which it becomes important is obtained
balancing the two terms:K3 / l z

4;T/D/ l z
2 , or l z;AK3D/T.

APPENDIX B: RENORMALIZATION
OF D BY DEFECT-PHONON COUPLING

In Sec. III we described the wandering of a defect li
along theẑ axis by a ‘‘diffusion’’ constantD5a0

2nk/2, cor-
responding to an effective Hamiltonian@Eq. ~3.4!# Hde f ect
5(g/2)*dzudrd /dzu2, rd(z) describing the in-plane position
of the defect string, withg5T/D. To incorporate the effec
of lattice fluctuations on the diffusion of the defect string, w
modify Hde f ect to

Hde f ect-phonon5
g

2E dzU6drd

dz
1t~rd ,z!U2

, ~B1!

where the expression in brackets now represents the de
tion of the vacancy or interstitial string with respect to t
local director

t[
]u

]z
. ~B2!
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Figure 14 illustrates the case of a vacancy string, which
shall assume for the remainder of this appendix.

It is easy to derive the diffusion equation for the partiti
function Z(rd ,r0 ;z,0) corresponding to the above Ham
tonian@the $u(r' ,z)% dependence inZ has been omitted fo
convenience#:

]zZ2~ t•“'!Z5D¹'
2 Z. ~B3!

Z represents the probability density for the defect positi
2t is the ‘‘convective velocity’’ for this density. It can als
be thought of as an~imaginary! vector potential acting on a
particle of massg in two dimensions, withz the timelike
coordinate.

Defining the propagatorG(r' ,z)5Z(r' ,z)u(z), u(z)
being the step function,G obeys

~]z2D¹'
2 !G~r' ,z!5d (2)~r'!d~z!1t•“'G. ~B4!

The bare propagatorG0 corresponds to ignoring the conve
tive influence of the medium. Thus,G0 satisfies

~]z2D¹'
2 !G0~r' ,z!5d (3)~r !. ~B5!

Fourier-transformingr'→k ~spacelike! and z→v ~time-
like!,

G0~k,v!5~2 iv1Dk2!21. ~B6!

The renormalized diffusion coefficientDR will be calculated
from the average ofG over the phonon degrees of freedo
using the definition

G~k,v!2152 iv1DRk2 ~B7!

in the limit uku,v→0. Upon denotingk[(k,v), Eq. ~B4!
becomes

G0
21~k!G~k!511E

k8
ik8•t~k2k8!G~k8!. ~B8!

The symbol*k denotes*d3k/(2p)3 . Equation~B8! can be
expanded in a perturbation series:

FIG. 14. Illustration of the coupling between a defect string a
the lattice distortion. In this case, the change in the position of
vacancy string~thick dashed curve! is equal and opposite to th
change in the phonon displacement field.
e

;

G~k!5G0~k!1G0~k!E
k8

ik8•t~k2k8!G0~k8!

1G0~k!E
k8

ik8•t~k2k8!G0~k8!

3E
k9

ik9•t~k82k9!G0~k9!1•••. ~B9!

To calculate the thermal averages of products oft52 ivu,
we need

^ua~k!&50,

^ua~k!ub~k8!&5@SL~k!P ab
L ~k!1ST~k!P ab

T ~k!#d (3)~k2k8!
~B10!

[Sab~k!d (3)~k2k8!, ~B11!

where the correlation functions parallel~L! and perpendicu-
lar ~T! to k are

SL/T~k!5
T

K3v21c11/66k
2

~B12!

and the projection operators areP ab
L (k)5kakb /k2 and

P ab
T (k)5dab2P ab

L (k). Therefore

^G~k!&5G0~k!2G0~k!F E
k8

kakb8v2Sab~k2k8!

3G0~k8!GG0~k!1•••. ~B13!

Diagrammatically, this series is represented in Fig. 15.
diagrams of type~b! and ~c! reducible to the one-loop dia
gram ~b! can be summed to givêG(k)&21'G0(k)21

1V(k) where V(k) is the term in square brackets in E
~B13!. Then,DR5D1dDR where

dDR' lim
k→0

1

2
¹k

2V~k!. ~B14!

With the assumptionlL/TD2a0
23!1, in other words, kink

size l * ! l k , the kink separationdDR can be evaluated to
give

dDR

D
'

T

K3
1/4S 1

c11
3/4

1
1

c66
3/4D L5/2

20A2p
, ~B15!

where we have imposed a cutoff by replacing the hexago
Brillouin zone by a circle of radiusL[4p/A3a0 which has
the same area. Ifc66!c11, the fluctuations are mostly trans
verse, and

dDR

D
'

^uuu2&

a0
2

4p

5A3
. ~B16!

Since^uuu2&/a0
2&cL

2 , where the Lindemann ratio for hexago
nal columnar crystalline lattices is empirically known to b
cL

2.1/50 @16#, we finddDR /D,3%.
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APPENDIX C: INTERACTION BETWEEN DEFECTS WITH
n-FOLD SYMMETRY

We assume the defect string to be straight, so that only
planar elastic deformation energyFcrystal ~Eq. 2.3! is rel-
evant. In the continuum model discussed, this energy is
tropic in the strainsui j . The stresss i j 5dFcrystal /dui j can
be expressed in terms of a biharmonic stress functionx @24#,
¹'

2 ¹'
2 x50, ass i j 5e ike j l ]k] lx (e i j is the two-dimensiona

antisymmetric tensor,e1251).
For a dislocation with Burgers vectorb, x

52Kẑ•(b3r')ln r' , where K5m(l1m)/p(l12m) in
terms of the Lame´ coefficients.

We constructx for ann-fold symmetric vacancy or inter
stitial by treating it as a superposition ofn dislocations
~bound! symmetrically placed a distanced'a0 apart ~such
that the volume of the defect isV;nda0), with Burger vec-
tors separated by 2p/n in orientation. The resulting stres
function has a form satisfying

¹'
2 x5KVS 2pd (2)~r'!2

1

d2 (
k51

`

ak

cosknu

~r' /d!knD ~C1!

whereak are coefficients ofO(1).
The interaction energy of two such defects, located ar1

and r2, respectively, can be written in terms of their stre
functions as

U12~r12[r22r1!5
1

4pKE d2r'¹'
2 x~r'2r1!¹'

2 x~r'2r2!.

~C2!

FIG. 15. Diagrammatic representation of the series expansio
the propagator for the defect probability density. The averag
over the phonon degrees of freedom.
e

o-

s

For r 12/d@1, the leading term in the interaction comes fro
the convolution of thed function with thek51 term ~in
other words, this is the cost of the volume change produ
by one defect in the stress field of the other!; therefore it is of
the form cosnu12/r 12

n .
Specifically, we find for vacancies~the sign is reversed

for interstitials!

n Relative orientation U(r') ~units of KV/d2)

2 parallel
2cos 2u1cos 4u

~r/d!2

2 perpendicular
22 cos 2u1cos 4u

~r/d!2

3 parallel
23 cos 6u

~r/d!4

3 antiparallel
22 cos 3u

~r/d!3
1

3 cos 6u

~r/d!4

6
22 cos 6u

~r/d!6

APPENDIX D: EWALD SUM FOR V„R…Ä K0„kR… AND
1ÕRp

Let f(r ) be the two-body interaction potential betwee
chargesqi in the given system so that the total interacti
energy is

U5
1

2
((

iÞ j
qiqjf~r i j !. ~D1!

The simulated system consists ofN particles in a cell re-
peated to generate an infinite system. Then the energy
cell can be written as

U5U0a
1

1

2 ((
iÞ j

N

qiqjva~r i j !, ~D2!

where@21#

va~r i j !5(
n

@f~r i j 1n!2ca~r i j 1n!#

1
1

A (
G

c̃a~G!eiG•r i j , ~D3a!

U0a
5

1

2 S (
i

qi
2D lim

r→0
@va~r !2f~r !#. ~D3b!

Here the sum overn consists of all real space lattice vecto
of the lattice generated by a cell of areaA, and the sum over
G goes over the corresponding reciprocal lattice vectors.
lattice is rectangular~almost square! in our case, which
makes it easy to list these vectors.ca is the long-range par
of the interactionf, so thatf2ca is a screened, short
ranged interaction.c̃a is the Fourier transform. The amoun
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of screening is controlled by the Ewald parametera. If we
takea to be large enough so that the real space sum ca
truncated atr c5L/2 within the desired precision, then w
can drop the sum overnÞ0 @25#. However, this means in
cluding more short-range components in the screen
charge distribution, so that it spreads to higher recipro
vectors. The cutoff in reciprocal space is again determi
by the precision required.

Since we shall be consideringN particles, each withqi

51, we have( iqi
25N and (( iqi)

25N2 . Rearranging the
sums in U and noting thatN/A[r, which is constant
throughout the calculation, we can rewriteU as

U5Ure f1Uint , ~D4!

where@21,25#

Uint'((
i , j

N

@f~r i j !2ca~r i j !#1
1

2A (
G

c̃a~G!

3F S (
i

cosG•r i D 2

1S (
i

sinG•r i D 2G , ~D5a!

Ure f'2
N

2
lim
r→0

ca~r !1
N

2
r lim

k→0
c̃a~k!. ~D5b!

Note thatUre f is explicitly proportional toN in this form.
This is the form we use in our calculations. For interactio
whose long-range integral diverges~such as 1/r p with p
<2), a uniformly spread background of equal and oppo
charge is assumed, so that the second term inUre f should
contain

lim
k→0

@c̃a~k!2f̃~k!#. ~D6!

We can now proceed to the special potentials we are
terested in. For the power-law potential

f~r !51/r p[
1

G~p/2!
E

0

`

dt tp/221e2tr 2
, ~D7!

we take@26#

ca~r !5
1

G~p/2!
E

a2

`

dt tp/221e2tr 2
[

1

r p

G„p/2,~ar !2
…

G~p/2!
,

~D8!

so that the screened interaction is

f~r !2ca~r !5
1

r p

g„p/2,~ar !2
…

G~p/2!
. ~D9!

~G and g are complementary incomplete Gamma functio
@27#.!

The Fourier transform is (d52)

c̃a~k!5
pd/2

G~p/2! S 2

kD d2p

GFd2p

2
,S k

2a D 2G . ~D10!

Also,
be

g
al
d

s

e

-

s

lim
r→0

ca~r !5
ap

G~p/211!
, ~D11!

lim
k→0

c̃a~k!5
2

p2d

pd/2ap2d

G~p/2!
, p.d. ~D12!

For p,d, the above expression corresponds to limk→0@c̃a

(k)2f̃(k)#. For p5d, both forms would diverge; however
they would be independent ofa, and since the defect energ
is a difference of energies, this term would cancel out.

The force on particlej, f j[2“ jU, can also be written as
a sum of real space and reciprocal space contributions:

f j5(
iÞ j

f i j
R1f j

G , ~D13a!

where

f i j
R52

G„p/211,~ar i j !
2
…

r i j
p12

r i j ~D13b!

is the sum of forces on particlej due to particlei and all its
images, and

f j
G5

1

A (
GÞ0

c̃a~G!F S (
i

cosG•r i D sinG•r j

2S (
i

sinG•r i D cosG•r j GG ~D13c!

is the sum of forces on particlej due to all images of itself.
The coordinatesr here are normalized such thata051.

When we changeN to Nd5N61 and rescalea0 to a
5ANd /N after inserting a defect, we chose to keepr nor-
malized with respect toa, so that it picks up a factor ofa. If
we also scalea by 1/a, the productar remains unchanged
~as doesG•r !, so that we can keep using the original valu
of a andG in Uint and f, and scale the result by 1/ap in the
end. InUre f we have to use the scaled value ofa along with
Nd , and subtract the energy of the perfect lattice scaled
Nd /N.

On the other hand, if we do not scalea, Ure f cancels out,
but a has to be replaced byaa in Uint and f.

For the modified Bessel function interaction

f~r !5K0~kr ! ~D14!

~wherek representska because of the normalization ofr!,
the k50 case, corresponding tof(r );2 ln r, has been
treated by Freyet al. @2#. To extend this tok.0, we perform
an expansion similar to that of Silva and Mokross@28# for a
Yukawa potential. Writing the potential in integral form,

f~r !5K0~kr ![
1

2 E
0

`dt

t
e2te2(kr )2/4t, ~D15!

we choose the screened interaction to be
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f~r !2ca~r !5
1

2 E
(ar )2

` dt

t
e2te2(kr )2/4t

5
1

2 E
1

`ds

s
e2(ar )2se2(k/2a)2(1/s). ~D16!

Expanding the exponential within the integral in a Tay
series aboutk50, we get

f~r !2ca~r !5
1

2 (
n50

`
~21!n

n! S k

2a D 2n

En11„~ar !2
…,

~D17!

whereEn(x) is the exponential integral function@En11(x)
5xnG(2n,x)#.

For k50, only the first term,E1„(ar )2
…, is nonzero. For

k.0 we have an alternating series, and its convergence
to be taken into account in determining the optimum value
a ~in addition to the required precision and the cell size!. For
large values ofk, not only are a large number of term
needed in this series to reach the desired precision, the
mum value ofa is also large due to convergence rquir
ments, increasing the cutoff in reciprocal space, so that
computation time increases dramatically. We were able
carry this calculation tok54, where it matched the result
from the short-range method to 1 part in 20 000.

We also need the following quantities~in d52):

c̃a~k!52p
e2(k21k2)/(2a)2

k21k2
, ~D18!

lim
k→0

c̃a~k!5
2p

k2
e2(k/2a)2

, ~D19!
an
em
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e
to

lim
r→0

ca~r !5
1

2
E1F S k

2a D 2G . ~D20!

At k50 we take

lim
k→0

lim
k→0

@c̃a~k!2f̃~k!#52
p

2a2
. ~D21!

Also,

lim
r→0

ca~r !'2g/21 ln a2 ln ~k/2!1O~k2!. ~D22!

The lnk term cancels in the defect energy, so that the lim
k→0 is again well defined. Similarly, if we did not subtra
limk→0 f̃(k), we would have an extra term 2p/k2, which
too would cancel out.

The expression for the force is similar to Eqs.~D13!
where f i j

R is a series similar tof(r )2ca(r ), with each
En11„(ar )2

… replaced by 2a2En„(ar )2
…r . On scaling,

c̃a(k) has to be recalculated because it does not simply s
as a power law.

The special functions used here were all calculated to
accuracy of 10216 according to routines taken from Re
@23#. Since the power-law calculations were mostly carri
out on integral values ofp, the gamma functions were onl
needed for integral or half-integral orders, in which case c
tain recursion relations can be used@29#. We used the fastes
method for each order.
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