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Statistical mechanics of vacancy and interstitial strings in hexagonal columnar crystals

Shilpa Jain and David R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 2 April 1999

Columnar crystals contain defects in the form of vacancy-interstitial loops or strings of vacancies and
interstitials bounded by column “heads” and “tails.” These defect strings are oriented by the columnar lattice
and can change size and shape by movement of the ends and by forming kinks along the length. Hence an
analysis in terms of directed living polymdiS. A. SafranStatistical Thermodynamics of Surfaces, Interfaces,
and Membrane¢Addison-Wesley, Reading, MA, 1994Sec. § is appropriate to study their size and shape
distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in
the crystalline phase, a string proliferation transition occurs, leading to a supersolid[ghdsey, D. R.

Nelson, and D. S. Fisher, Phys. Rev.4B, 9723(1994); see also J. Prost, Lig. Crys®, 123(1990]. We
estimate the wandering entropy and examine the behavior in the transition regime. We also calculate numeri-
cally the line tension of various species of vacancies and interstitials in a triangular lattice for power-law
potentials as well as for a modified Bessel function interaction between columns such as occurs in the case of
flux lines in type-ll superconductors or long polyelectrolytes in an ionic solution. We find that the centered
interstitial is the lowest-energy defect for a very wide range of interactions; the symmetric vacancy is preferred
only for extremely short interaction ranges.

PACS numbs(s): 61.30.Cz, 61.30.Jf, 64.60.Cn

[. INTRODUCTION rection[3], such a phase is analogous to the supersolid phase
of the bosonic system, which incorporates vacancies and in-
The physics of columnar crystals is relevant to the Abri-terstitials in its ground state. This entangled solid melts into
kosov lattice of flux lines in type-ll superconductors andan entangled liquid or an entangled hexatic at even higher
liquid crystalline materials like concentrated phases of longemperatures.
polymers or discotics. The stability of the columnar crystal ~The proliferation of vacancy or interstitial strings could
has been investigated, and various mechanisms proposed @Jg0 affect a crystal-to-hexatic transition mediated by dislo-
its melting. Conventional melting, which arises when phonorfations. Dislocations in the columnar crystalline geometry
displacements reach a fixed fraction of the lattice constanf'® normally constrained to lie in the vertical plane formed
can easily be located via the Lindemann critefid]. Melt- by their Burgers vector and theaxis, because a dislocation
ing destroys the two-dimensional crystalline order perpenin @ two-dimensional cross section can move along the co-
dicular to the columns leading to a nematic liquid of lines orlumnar axis only through glide parallel to its Burgers vector.
columns, which is entangled at sufficiently high densities. 1ransverse motiofclimb) would require it to absorb or emit
Crystal defects play an important role above the melting’acancies or interstitials. This becomes possible in the super-

transition. If edge dislocations in the crystal proliferate, theySOIId phase, thus allowing dislocation loops to take on arbi-

drive the shear modulus to zero, leading to a liquidlike sheaf 2" nonplanar configurations which would have to be in-

viscosity. However, dislocations alone cannot destroy theCIUde‘j in the treatment of Ref] to study melting out of a

sixfold orientational order of the triangular lattice in a two- SuQ/eersgggypgr?jﬁ]t.erstitiaI strings in a columnar crystal tend
dimensional cross section. Thus, provided disclination Iine§0 be lines themselves because of the continuity of the col-
do not also proliferate, the resulting liquid of lines is hexatic, ;,ns If the columns are constrained to be continuous across
not isotropic[5]. The screw component of the unbound dis-he entire sampléas is the case for vortex lines in type-Ii
locations leads to entanglement. A finite concentration Oguperconducto)sthese defects must either thread the entire
unbound_ disclinatjons superimposed on the hexatic ”qUi%ample(Fig. 1) or appear in vacancy and interstitial pairs
leads to isotropic in-plane order. forming loops(Fig. 2) [2]. The situation is different, how-
Another kind of transition is brought about by vacancy- eyer, for finite-length polymers, or columns of discotic liquid
interstitial line defects in columnar crystals composed Of¢rystal molecules which can break and reform freely. As
long, continuous lines. As discussed in Ref], under suit-  jjystrated in Fig. 3a), a slice through a low temperature
aple qonditions(such as high field. and small interlayer cou- configuration in a polymer columnar crystakith transla-
pling in layered superconductoyst can become favorable tjonal order perpendicular to the column axis but not parallel
for these line defects to pro!iferate. If this happens at a temyg it) would consist of tightly bound polymer “heads and
peratureTy below the melting temperaturgy,, then the tajls " At higher temperatures, however, the heads and tails
phase that exists betwediy and T, will be simultaneously || separate, either moving apart to form a vacancy string or
crystalline and highly entangled. In the boson analogy of ary|iding past each other to form a line of interstitidRig.
aligned system of lines, where the lines represent twog(p)][7]. In columnar discotic crystals with similar transla-
dimensional bosons traveling in the “timelike” axiat)di-  tional order, “heads” and “tails” are absent at low tempera-
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FIG. 3. Formation of vacancy or interstitial strings by sliding of

FIG. 1. Vacancy string4(z) (thick dashed curyemeandering polymers within columns in a columnar crystal of finite-length
through a columnar crystal. Dashed lines represent columns jugtolymers.

above or below the plane of the figut@aken from Ref[2].)
umns in neighboring sheets like that shown in Figs. 1 and 2

tures, but appear spontaneously when vacancy and interstitia "'ecessary to clearly reveal that these are strings of vacan-

strings are excitedFig. 4). (Head and tail defects appear cles and |nFerst|t|§1I$. . .

supegrficially like dislo%ations in the cross sections sh%p\)/vn in Unhk_e dislocation Imeg, the_se strlng_and loops are not

Figs. 3 and 4. A three-dimensional analysis of lines and Colgonstrg|ned_ to be planar: the lines can jump to any nel_ghbor-
ing lattice site as they traverse the crystal. Several horizontal

jumps connecting a head to a tail are shown in Fig. 5. Note

that leftward deflections of the vacancy segment connecting

a head to a tail are accompanied fightward deflections of

the lines or columns themselves. A typical string can be ap-

proximated by an alternating sequence of straight segments

Ug.

O

(I

=
=

.
!
'
!
[}
1
1
!
!
[}
I
|
1
1
'
I
I
1
1
!
1
1
[}
!
1
1
1
1
)
!
1
!
I
1
1
|

(a) (

FIG. 2. Vacancy-interstitial loop in a columnar crystal. Dashed FIG. 4. Formation of vacancy or interstitial strings in a discotic
lines represent columns just above or below the plane of the figureeolumnar crystal by columns sliding past each other, or incurring
(Taken from Ref[2].) gaps.
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mechanics in a grand canonical ensemble by introducing a
head and/or tail fugacity, similar to the fugacity that controls
defect concentrations in theories of vortex or dislocation un-
binding transitiong8]. We assume here that we can treat
polymer crystals using the same formalism provided we tune

// the head or tail fugacity to achieve the fixed concentration
Tail /// determined by the mean polymer length. Long polymers im-
/// Head ply a dilute distribution of heads and tails. We exclude, for

//// simplicity, the possibility of hairpin excitations in polymer

systems, which can be regarded as doubly quantized intersti-
tial excitations leading to a higher energy. As we shall see,

the sharp defect proliferation transition discussed in R&f.

is blurred when there is a finite concentration of heads and

tails in equilibrium.

Given an appropriate combination of parameters, namely,
low line tension combined with head and/or tail and kink
energies comparable to the temperature, the entropy of dif-

FIG. 5. lllustration of a vacancy stringhick dashed curve  fusion of the strings can overcome the line tension and lead
joining a column head to another column’s tail in a columnar crys-tg string proliferation, allowing heads and tails to separate to
tal composed of long-chain polymers. arbitrarily large distances. As in its bosonic counterpart,

there exists off-diagonal long-range order in this phase, rep-
and kinks joining the head of one column or polymer chainresented by
to the tail of anothefsee Fig. 6.

These line defects are topologically stable in {Be-1)- lim  {(y(r,,20¢*(r;,2'))#0 (1.1
dimensional columnar geometry, as are the corresponding [r' =1, |—oe
point defects in two dimensions. Although a line defect in a
(1+1)-dimensional geometry would be pinched off by relax- where s and ¢* are head and tail “destruction” and “cre-
ation of the neighboring columns into or away from it, suchation” operators[3], implying entanglement of lines on a
relaxation is not possible in th@+1)-dimensional case, as macroscopic scale. If defects are absent or appear only in
each (1+1)-dimensional plane has to stay commensurateclosed loops, the expression above will vanisHrds—r | |
with its neighboring planes. A translation of columns in the —«. Once defects proliferate, a line can wander to any other
neighborhood of the line defect can only translate the defeatolumn and Eq(1.1) has a finite limit. A crystal with pro-
laterally. liferating vacancies and interstitials is an incommensurate

Vacancy and interstitial strings are suppressed at low temphase—the magnitude of the smallest reciprocal veGor
peratures because they have a finite line tension, and henee477/\/§a0 is no longer related to the areal density in the
an energy proportional to their length. At higher tempera-obvious way asp=/3G%8w? because the density differs
tures, heads and tails can move apart, forming variablefrom its defect-free valug,=2/\/3a2 (a, being the lattice
length strings that wander or “diffuse” perpendicular 1o ¢onstant of the triangular lattice in cross sectiohll crystals
their length by forming kinks. These strings thus resembleyt pointlike atoms or molecules are trivially “incommensu-
living polymers[1], except that they are directed, on aver-yate” in this sense—the corresponding pointlike vacancies
age, along the axis. In polymer crystals, the number of such and interstitials proliferate at any finite temperature. It is the
strings is determined by the fixed concentration of heads andnomalous suppression of vacancies and interstitials and
tails. In columnar discotic crystals, heads and tails can béheir organization into lines at low temperatures in columnar
created freely, and it is appropriate to treat their statisticatrystals that makes these materials unusual.

The discrepancy between the density of columns as in-
ferred from x-ray measurements of the lattice constant, and
the molar concentration of the columns, gives a measure of

y the volume fraction of vacancy or interstitial defects in the
crystal. In experiments performed by Albowy al. [9] on
_‘l z hexagonal columnar phases of thermotropic mesogens as dis-
r(z) cotic units, measurements indicate a significant departure be-
tween these two values at temperatures close to the hexatic
il — nematic transition and above. At the transition itself, there

is a jump in the defect volume fraction of order 1/100. As the
head and/or tail fugacity of defect strings approaches infinity,
we expect to see a sharp second-order transition with
—poxT—Tqy [3].
One of the conditions that makes proliferation of line de-
fects energetically favorable is low shear modulus. If the
FIG. 6. Schematic of a defect strifgomposed of straight seg- supersolid phase appears in a narrow region close to the
ments and kinkswandering through the columnar crystal. melting of the hexagonal columnar crystalline phase, it might
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appear very similar experimentally to the hexatic phase. Eviergy of the system is a sum of nematic and crystalline con-
dence of a hexatic phase in high-density DNA solutions hagributions:
been found in experiments by Podgorrk al. [10], using
structural probes coupled with osmotic stress measurements. F=Fnematict Ferystal- (2.9

In this paper we apply the physics of directed lines to
vacancy and interstitial strings. With this in mind, we briefly
review the elasticity theory of these systems in the next sec- 1
tion. In Sec. Il we model a single string and estimate its r . —Z~ J BrIK, (V024 KoV, X 1) 2+ Ka(d,t)?]
transverse wandering. The form of this wandering is un- 2
changed by coupling to phonon distortions of the lattice, as (2.2
shown in Appendix A. So is its magnitude, as calculated in
Appendix B. In Sec. IV we apply the statistical mechanics ofand
living polymers to an ensemble of directed strings and cal-
culate their volume fraction, average length, etc., in the non- fcrystalzf dzf d?r,
interacting limit. A simple quadratic-interaction model is
presented in Sec. V, similar to the one discussed via the
boson mapping in Ref(3], and we reproduce the results WhereKi, Kp, andKs are the Frank constants for splay,
therein. Numerical calculations of the line tensions of vari-WiSt, and bend, respectively, andand n are the Lame
ous species of defects are presented in Sec. VI. The intera€€fficients. The matrix;; = (dju; + d;u;)/2 is the linearized
tion potentials considered are repulsive and monotonic; w@D strain field. In the presence of an external field, one
study simple power laws as well as a screened Debyekélu  should add taF
interaction. We find many metastable species of vacancies.
However, the lowest-energy defect is always found to be the s :E Hzf dzf d2r |t|2 (2.4
one with the highest symmetry in its category. For very short ext— 2 Xa L '
range interactions, this is the symmetric vacancys)(V
whereas for most interactions the centered interstitiglid ~ where y, is the anisotropic part of the susceptibil[ty2].
most favored. Appendix D contains details of the Ewald The last two contributions t¢F are quadratic in the de-
summation calculations for the potentials considered here. rivatives, and can be rewritten as

To the lowest order in the fluctuations, these are given by

8p\?

— |, (23
Po

M u? +1)\
1) 2

1
_ 3 2 2
Il. REVIEW OF ELASTICITY THEORY Forystart Fext= 2 f dor[Caa(V - )™ Coe(V. XU)

2
Before discussing defects in a columnar crystal, we re- +Ca4(3,u) ]+ (surface terms (2.9
i h gt of sty bcry en 098 e Seperoc, =21, i, ey, Th st
i U terms become important when there are defects within the

columns aligned along a common directia) (p to thermal |k of the crystal, like vacancy and interstitial strings, rep-
fluctuations, with crystalline order in any cross section peryesented by cuts joining column-end singularities in the field
pendicular to the columnar axis. In the case of flux lines, the,(r 7). Evaluating these terms over a cylindrical surface
average direction of alignment is imposed by an externabnclosing such a string yields the energy cost of the defect
field (H=Hz) and local deviations from this direction cost string: a line tensionr,~ua? due to the elastic distortion
energy. With columnar crystals of long-chain moleculesaround the string, in addition to a core eneff§y per unit
composed of covalently bonded nematogens or disk-shapéaédngth (of the same order of magnitudeithin the cylindri-
molecules cylindrically stacked via hydrogen bonds, or am<al core.
phiphilic molecules in cylindrical micellar aggregates, the 7. ..ccan be further simplified if, as is often the case
columnar axis represents spontaneously broken rotation@ith nematic polymers, the splay and twist constants are
symmetry. Therefore local deviations from the alignment di-small in comparison to the bend constant. Specificalliif
rection are not penalized, but undulations of the column aregng K, satisnyl,za(;l/m« [4], then they can be ne-
The rotational symmetry can, however, be broken by imposgjected. For long-wavelength distortions along the columnar
ing an external field. In addition, the two-dimensional crys-5yxis the dominant free energy contribution is they{92u)?
talline orqer r_essts shear and areal deformations perpendiciy ihe absence of an external fiells can be simply related
lar to thez axis. to the persistence lengtl of the polymer aK;=KkgTlpp.

Low-energy fluctuations of the system can be described The statistical mechanics of defects in polymer liquid
by a “continuum” model that works for small-amplitude, crystals has been discussd in detail by Selinger and Bruinsma
long-wavelength deformatiorj41,3,12. The important fluc-  [13,14. The presence of defects imposes a deformation on
tuations in this limit can be characterized by a two-the T=0 equilibrium configuration. In the case of a semi-
dimensional(2D) displacement fieldu(r, ,z), representing infinite vacancy or interstitial string with a head or tail at the
the average deviation of lines in the,{) plane in a small  origin, this distortion follows from minimization of the free
region centered atr( ,z). With it can be associated a local energy above with respect tir, ,z) under the constraint
areal density changép/p,=—V, -u (po=2/\/3a3) and a
local nematic directon=z+t, with t=3u/dz. The free en- V. -u==*py8(r,)6(z)+(nonsingular terms (2.6)
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=7, andg is the energy of a polymer end. We expect that
the results for defects with a high density of kinks would be
qualitatively similar.

In units such thakg= 1, the partition function of a string
of lengthl is

Zl=(1+qe‘8k/T)'/'*e"T/T, (3.0

where T is the temperature, and is the two-dimensional
coordination number of the lattice on which the defect string

FIG. 7. Distortion induced by a column end in the neighboringI'V(':‘S . for a_symmetrlc vacancy this is the same as tha_‘t of
columnar crystalline matrix. The distortion is confined to a vertical tN€ Original triangular latticeg =6, whereas for a symmetric
extent|z|< X, (shaded regionaround the column end. interstitial it is that of the dual honeycomb lattiag: 3 (see

Sec. V). The above expression represents the freedom of the

where thex sign refers to a column tail or head located atString to jump to any of the neighboring lattice sites any-
the origin. Since the planar distortion about a string has aziwhere along its length. These transverse meanderings cause
muthal symmetry in the continuum approximatida, X u an entropic lowering of the free energy per unit length of the
=0. Hence, the only relevant terms in the free energy are th&trng:
bend and bulk distortion terniseglecting splay The result-
ing distortion around the column end spans a parabolic re-
gion about the radial directiofsee Fig. 7 defined by

; T — e /T
fi=lim—-TInZ)/I=7— Fln (L+qge °'")
| —oo0
Z2=\r) 2.7
Ta _ T ey T
) ] ) =7——e °k'" for e %k''<1, (3.2
where N = VKj3/cq4 is the length scale relating the distor- |*
tions parallel and perpendicular o) ) ) , .
Selinger and Bruinsma also calculate the interaction enlf Ny is the total number of kinks, the average kink density is
ergy between two column ends by superimposing the distor-
tion created by each. They find the interesting result that a _ ~ sl for e o/T<1
head and tail in aematicmedium attract weakly if they fall [ I* 1+qe/T e '
within each other’s region of influence, as just described, but (3.3
repel otherwise. However, in a columnar crydiaith non-
zero shear modulisthe interaction is always a strong attrac- Thus, kinks are on the averade=I*e*'T/q monomers
tive linear potential due to the finite line tension associatecapart. The assumption of dilute kinks then translates into the

(N _ 1 qer’T g

Ny

with the string of distortions joining a head to a tail. condition I*n,<1, or g>T, which can be rephrased as
(|ul?)/a3<1 [3,4], a condition clearly satisfied by a crystal
[1l. WANDERING OF A SINGLE STRING below its Lindemann melting point.

The above is a “diffusive” model for the string—ifl

Consider a single vacancy or interstitial string "_1 a he_x'denotes the horizontal end-to-end displacement, the mean
agonal columnar crystal of, say, polymer strands with 'att'ceSquare wandering i§d|)=2DI, where the “diffusion con-

constantay and monomer spacingalong the columnar axis stant” D is given by 2D=a(2)nk. Consider a continuum de-

z. For a discotic columnar liquid crystat, is the_ spacing scription of the string in terms of a functiony(z), ry(2)
between oblate molecules along the column axis. For a flugeing the transverse displacement. Provided the average
line in a layered type-Il superconductor with magnetic f'eldslope|drd/dz| is small, this “diffusive” wandering will cor-

perpendicular to the layers is the layer spacing. If the respond to an effective Hamiltonian of the form
string is vertical, the energy per unit lengthis of the order

of ,uag (see Sec. lwhereu is the in-plane shear modulus of [
the crystal. For a horizontal string; =¢,/ay; where the Hy= JOdZ
kink energye,~ k*u%“a2 [3], k=K3/p being the bending

idi o 1/4 - . L . .
rigidity. The ratio is, /T*z“(K/M) lag~1*/a wherel™ is  The continuum approximation to the free energy is appropri-
the kink size. Typically*>a,, so that the strings are pre- ate in the limit of largd, since a line subject to kink excita-
dominantly vertical, with few kinks. For flux lines, on the tjons is always above its roughening transition.

. Y / . _ . . . Ly
other hand, the kink energy ig"?u"?a, with g=ca/p, Here we have assumed that the string is wandering within
wherecy, is the tilt modulus ang is the areal line density. 3 frozen crystal. However, the lattice around the vacancy or
The ratio is then §/u)“7a,. In highly anisotropic layered interstitial string responds to its presence by collapsing or

superconductors, this ratio can be small, favoring largeexpanding around it. For a straight string gt 0, the defor-
nearly horizontal defect excursions. We will for now work mationu(r, ,z) is given by

with nearly vertical strings, allowing for a gas of kinks suf-

ficiently dilute so that the interaction between kinks can be Qr,

ignored (see Fig. 6. We thus assign to a string of vertical uqg(r, ,2)= tz— — (3.5
extent| and n, kinks an energyl 7+ n,g+ 2g, Where 7 mry

2
+7

drd
dz.

g

T
5 =—. (3.9

97 p
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in the continuum description of the crystal, that is, awayline tensionr, and a diffusion constaf. The latter two can
from the defect where the deformations are smallis the  pe combined in an effective chemical potenﬁ_ﬁlzTMd per
area change due to the vacancy or intersti@:a3. The  kink size (*) of the string:

energy of this deformation has to be included in the energy B et

cost of the defect string. Again invoking the continuum ap- pa=1" (=7 THng=qe k"= /T, (3.9
proximation, we assume that for a defect string with smallitp, ny related toD throughD =a2n,/2. Because is ex-
average slope, the resulting deformation away from th‘?)onentially smallug~—1* /T~ —I* waT and is usually
string in any plane perpendicular rowill be approximately negative, which suppresses long vacancy and interstitial
that resulting from a straight string at the location of thestrings. Turning it positive would require raising the tem-

defect in that plane: perature and lowering the kink energy, and is favored by
a larger coordination numbey.
u(r, ,2)=ug(r, —rq(2),2). (3.6) Although we have assumed a constant shear modulus, the

presence of the defects themselves can drive it down expo-

o nentially with the defect concentration, as discussed by Car-
[In generalu(r, ,z) would depend on the derivatives of ,;,4 and y[17]. Thus, positiveu, becomes possible when
ra(z) as well] Within this approximation, the distortion en- softening of the bare elastic constants with increasing defect
ergy of the crystal with bending Frank's constakk  concentration is taken into account.
=Tlpp is, keeping terms up to fourth order in the derivatives
(see Appendix A IV. STATISTICAL MECHANICS

OF NONINTERACTING STRINGS

AH d2ry|? dry* At any finite temperature, a crystal with a negative string
1 d _2 d i . - . A Hhe g
— ~lp | dzZ P 157 |- (3.7 line chemical potential will contain a distribution of ther-
mally excited vacancy and interstitial strings. Since the string

energy is proportional to length in the noninteracting-kinks
These impart an effective stiffness to the defect string ancpproximation, the equilibrium probability distribution will
suppress transverse fluctuations over a length scalee an exponentially decaying function of length with mean
~agDK3/T~agylpn,. However, they do not change the determined by the line chemical potential, in the dilute
long-scale diffusive nature of the string. string-gas limit where interstring interactions can also be ne-
The lattice distortions renormalize the diffusion constantglected[1]. In discotic crystals string heads and tails can be
of the string when the symmetry direction of the crystal iscreated as necessary. In a crystal of long polymers, the num-
externally imposed, as in the case of flux lines, or in a poly-Per of heads and tails is fixed by the mean polymer length.

. . N Let N be the total number of possible kink sites in the
mer crystal with an external field along tzedirection. The lattice. N = volumex o/l* and letP, be LN X the number of
tilt moduluscy, is then nonzerdEg. (2.4)], andD is renor- ' e !

defect stringd links long. Assuming that only one kind of

malized toDg, where(see Appendix B defect string is present—those with the lowest line
tension—we can write the defect-free energy in terms of
1 1 C44 {PI} as[l]
D_R_B—'—O(ﬁ). (3.8

]-"d({P|})=2l N77|(280—IT,ud)+TZ NP(InP,—1).

For a dense vortekquid this effect has been analyzed in 4.
detail by Marchett[15] andD is found to be renormalized to
a value independent of its bare value in the long-wavelengtMinimizing with respect to thg P} yields the expected ex-
limit. The correction comes from convection of a tagged fluxPonential distribution:
line along the local tangent-field direction. P,=h?7 4.2

If a similar calculation is carried out for@aystal of spon- '
taneously aligned long semiflexible polymésee Appendix where z=e*d, and the head or tail fugacith=e ®0'T is
B), one finds a qualitatively different renormalization of expected to be small. For hexagonal columnar crystals of
D—the correction in the long-wavelength limit is propor- polymerswe work in a grand canonical ensemble and adjust
tional to its bare value, andD/D~1.45|u|?)/a2<3% us- €0 SO that the average head or tail concentration agrees with
ing cle/50[16] (c, is the Lindemann constant for melting the fixed value determl_ned by the mean .polymer length. The
of a columnar crystal The correction is negligible. It can be head or tail concentration will be small if the polymers are

ignored for another reason—the idea of convection of a lin ong. Fordiscotic crystals, the grand canonical ensemble is
. , he natural one and the head or tail concentration fluctuates,
by the mean local field, although appropriate for a dens

. ; ) . . Svith an average value determined by the fixed valueh of
fluid, would not be applicable in a crystalline environment _ (/T "4 the monomer fugacity=e“d< 1. The net de-
where diffusion can only occur through discrete jumps fromfect volu’me fractiong is '

column to column. Although thermal fluctuations are already

implicit in the exponential factor itﬁ)=a(2,nk/2 coming from

ny, defects in this case move onl i i ith- $=2, |P=h? :
Ko y on a discrete lattice, with - | (1-2)2

out phonon fluctuations.

To summarize this section, we characterize the statisticafhe total number of stringdly=Nn, is given by the string
mechanics of a defect string with a head or tail energya  density

4.3
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h? short ranged not only in the axial but also in the radial di-
n=> P=r—s. (4.4 rection.

At the other extreme, the strings are long, which would
happen in the vicinity of the head-tail unbinding transition
and in the supersolid phase itself. End interactions can then
be neglected and the remaining interaction between effec-
1 tively infinite strings becomes predominantly “radialf’.e.,

(4.9  perpendicular t@) provided the root mean square tilt with

respect to the axis is small. The defects are then noninter-
The length distribution has an average §t,2and a spread acting in the continuum model unless their anisotropy is
also of \2I,,,. The form(4.1) of the energy, linear i, is  taken into account. The interaction between defects with
really applicable only whehs 1, so that end effects can be n-fold symmetry =2, 3, or 6 falls off at least as fast as
parametrized by theindependent constast,. Then,uqis 1" (see Appendix € This interaction has an azimuthal
close to 0, and the relatiop=nl ,,,, holds. The asymptotic dependence of the form co8 or higher harmonics. The an-

A defect monomer is most likely to be found in a string of
mean length(in units of the kink sizg

ly=r——.
m |Md|

behaviors in the dilute and dense limits are as follows: ~ gular average vanishes, leading to an effective interaction
that vanishes as an even higher power, which is effectively
h?etd, z<1 short-ranged. As mentioned in the Introduction, the lowest-
_ 5 46 energy vacancy or interstitial defects for simple repulsive
o=y " 7=<1, (4.6 pair potentials in the radial direction are in fact of high
| eql?’ (threefold or sixfold symmetry.
We discuss here the simplest model for a short-ranged
h?, z<1 interaction—a repulsiveb’> model that has been treated ear-
n={ h2 4.7 Iier in Ref.[3] us_ing a coherent state path integral represen-
S| —, z=1. ' tation that exploits an analogy with the quantum mechanics
| el of two-dimensional bosons. The defect volume fractidn

_ _ _ . _ corresponds to the mean square boson field amplitudé)

/A string proliferation transition thus occurs 24=0 injn that description. Here, we reproduce the essential results
this model, corresponding to a temperatligg= 7. In the  ithout resorting to the sophisticated boson formalism. Upon
limit eg—o°, it corresponds to the appearance of a supersoli@dding a termu¢?/2 to the free energ§=F/NT in Eq. (4.1)

phase[2] that is simultaneously crystalline and entangled,qf the previous section, we find after minimization,
where infinitely long vacancy and/or interstitial strings facili-

tate the wandering and entanglement of lines in the crystal- P,=h2e!(ra=ue), (5.1

line phase. If the melting temperatuife,>Ty, this super- ) _ ) _

solid or incommensurate solid phase will exist betwdgn ~As discussed in Ref3], the couplingu is an excluded vol-

andT,,. ume parameter describing defect line repulsion. Téuwnd
The noninteracting approximation breaks down in the vi-Na have the same form as before, but watreplaced by an

cinity of T4 as calculated here, and its estimate will have toeffective fugacity¢:

be refined by including interactions. For finitg, the sharp

=zg U®
transition discussed in Reff2] will be blurred, as discussed 2—{(z,¢)=ze 7, 52
in Sec. V. so that
V. q’)z INTERACTION MODEL o(h §)=h2 4 5.3
Interactions between polymer ends in a columnar crystal (1-0)7

have been calculated by Selinger and Bruingt@ within .
the continuum approximation. Because of the uniaxial an- N€ volume fractions(h,z) now has to be solved for self-

isotropy, the interaction has a rather complicated form. Th&onsis.tently from Eq(5.3). Note that the effective .che.mical
distortion due to an isolated head or tail placed at the origifPot€ntial has been reduced by due to the repulsive inter-

at in-plane distance, extends over a vertical extefz|  action:
~yAr, whereh =+Kj3/cqy1 [see Eq(2.7)]. The resulting pori=IN = pg—Ug. (5.4)
interaction between heads and tails falls ag|3/for pre-

dominantly vertical separationg (|z|>\\.r,), and as Accordingly, the mean string length, changes to
—1/(\r,)%? for predominantly horizontal separations.

In polymer crystals, these contributions must be superim- 1 1

posed on the linear energy cost of the vacancy or interstitial ln=— H Ud— g’ (5.5
string joining them.

At low defect densities where the string length is muchThe free energy of the distribution fs= —u¢?/2.
smaller than the average separation of string centers of mass, The behavior of the string volume fraction for=0 and
we have 1uy|<1/¢*3, i.e.,|uq/>h?3 and a string interacts h+0 is illustrated schematically in Fig. 8. Four distinct re-
with other strings as a head-tail dipole. The effective inter-gimes emerge, with the following asymptotic behaviors.
action between dipoles then falls off very rapidly, becoming (1) For uq<—1 (point A in Fig. 8,
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h2/3 h4/3

¢=—=, Ng=—0, ln=—"r5:. (5.10
U3 ul3 ul3n2i3

Note that all quantities have interesting singularities in the
limit h—0.

If the head or tail fugacityh is small, the defect volume
fraction remains negligible at the transition, but the average
string length grows large so that it could become greater than
the interstring separation, now given by¢iP. Indeed,
1/¢pY2<],, if h<1/u?, which would be true if polymer ends
are highly unfavorable.

This long and dilute regime interpolates between the short

FIG. 8. The volume fractionp is plotted against the effective and dilute and the long and dense limits described in Ref.
defect chemical potentiagLy for the ¢? interaction model of a gas [3].
of defect strings. The strings are short and dilute in regime A, but  (4) For uq> u. (point B in Fig. 8, we have
long, dense, and entangled in regime(Baken from Ref[3].)

Mc
1 =—uc\/— 51
¢:h2eﬂd, nszhz, | = (5.6) Meff Mc P (5.11

|l
This is again the dilute limit where heads and tails are tightIyThe repulsion now keeps in check the string proliferation,
bound. and ue¢; approaches 0 as /4. Thus,

(2) For —1<ug<—(uh?¥%

M [ Mg 1 Jug
=—, ng=h\/—, lp=7——\/—. 5.1
h?2 h? 1 ¢ u s u m |Mc| Mc (612

=—— nNe=7——"0, |l ,=7—". (5.7)
O " Tad ™ T

This is the phase where strings are dense and entangbed—
is O(1). These results also agree with RES].

9" As the head or tail fugacitg— 0, the intermediate regime

(3) above(aroundu=0) shrinks to zero. Ah=0, heads and
tails are completely expelled, and we have a second-order
phase transition gt4=0 with ¢=0 for x4<0, and growing

RS Hd for uq>0, as in Ref[3]. This limit corresponds to the
situation in thermally excited vortex latticg8] because flux

These results are again identical to those for noninteractin
strings. This correspondence is expected, becdusg
> (uh?)3>u¢; therefore the effective chemical potential is
still approximatelyuy. The relationug~ — (uh?)Y® marks
the limit of validity of the noninteracting approximation, as
we argued in the beginning of this section. As we approac
this limit, we find for h—0, ¢,ns—0, whereasl,—». . o
: S . lines cannot start or stop within the sample. In the boson
Thus, the strings are still dilute, although lengthening. Note_. . .
that the results in this regime coincide with those of R&f picture, h acts I|I§e an exter_nal field coup]ed to the order
in the limit of short and dilute strings " parameter, injecting magnetic monopoles into the supercon-
Z(11h2) 13— ' . . ductor.
occ(i)rs|¢c()jr|h< :(l(");‘ )= te (na around the transition which We have neglected vacancy and interstitial loops, which
' exist even in the limih—0. For finiteh, their contribution

) ) can be neglected near the transition because for long loops,
_ h 1+2 Md _ h 1+1 Md the energy of a loop exceeds the energy of a string of the
- PRE 3 el Ns= [l 3 el same vertical extent: Whereas a string of lerigtias energy

¢ | Tinterstitial T 260 (We expect interstitials to be the preferred

¢

(5.8 defect at the transition in most cageshe energy of a
| i 1+E@ vacancy-interstitial loop of the same length would be ap-
™ 3 K proximatelyl (7yacancy® Tinterstitial) - FOr largel, the differ-

encel 7yacancy 280 Will strongly suppress vacancy and in-
These results can be matched onto those in the noninteradgrstitial loops. Because of this energetic barrier, loops

ing regime above by replacingy with cannot become arbitrarily large, and cannot cause entangle-
ment over macroscopic scales. Hor 0, as is the case for
vortex matter, fluctuations in the low-temperature phase are
fet= — pot mgl3= —Mc< 1— al ) (5.9 entirely in the form of loopg2], and similar to vortex ring
3uc fluctuations in the Meissner phase.

For systems with a finite axial length, the balance may be
which is now dominated by the repulsive interactiqrys;  tilted in favor of long strings because the end penalty is
~—u¢. The unphysical divergences of the noninteractingremoved if the ends move to the surface and the string
model have been suppressed and we find at the transitidhreads the sample. For threading strings the expression for
point entropy in Eq(4.1) is no longer valid because the freedom in
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FIG. 9. Various defects obtained in a two-dimensional triangula
lattice. The centered interstitial is the only stable interstitial defec
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FIG. 10. Defect energy as a function of the screeniagfor
V(r)=Kgy(xr) at system sizen=4 (N=480). Only the centered
interstitial is shown, because the edge interstitial is always unstable
to it. Various species of vacancies exist, within limited parameter
ranges, very close in energy. Lines joining the data points are only
an aid to the eye.

r. The calculations can then be performed on a two-
dimensional triangular lattice of points interacting with po-
tential V(r). Thus, the defect energies in a two-dimensional
Wigner crystal of electronsl8] would correspond to thiéne
tensionsof the corresponding string defects in a hexagonal
columnar crystal of lines interacting with an effective radial
1/r potential per unit length.

Such calculations have been carried out by several authors
[2,18,19. Whereas Refd.18] and[19] have considered de-
fects in a Wigner crystal of electron®/,(r)=1/r), Frey
et al. [2] have studied a modified Bessel function potential
V,(r)=ugKo(«r) in the k—0 limit. Here k=X "1, wherex
is the Debye screening length in the case of long polyelec-
fdrolytes in an ionic solution, and the London penetration

(depth in the case of vortex lines in a type-Il superconductor.

The limit k—0 corresponds to a long-range logarithmic in-

the z direction is lost. The remaining two-dimensional en- teraction, whereas in the short-range liméd,>1 the inter-
tropy can be ignored in a three-dimensional system, and waction is exponentially decaying. Both Ref2] and [19]
are left with

f=—pap+uep?2,

(5.13

dealt with long-range interactions (frand 1f, respectively,

and found that the centered interstitigee Fig. 9 has the
lowest line tension. We denote the centered interstitial by Cl,
or by I3 when we want to stress its threefold symmetry. The

where ¢ now is also the areal fraction of defects; and oneedge interstitialdenoted El or J) was found to be a saddle
finds ¢p=pu4/u, similar to region(4) discussed above.

terstitial. These line tensions depend on tyyee of vacancy

VI. NUMERICAL CALCULATION OF DEFECT
LINE TENSIONS

point and buckled into a Cl. The threefold symmetric cen-
tered interstitial Cl is the lowest-energy interstitial defect
over the entire range of interactions we studied. Among the
vacancies, the twofold symmetric crushed vacafugnoted

V, or V,, — see Fig. 9is the only stable one, the symmetric

Line tension calculations require that we find the lowest-sixfold vacancy () being unstable to it. The long-range
energy lattice deformation associated with a vacancy or ininteractions between the energetically preferred types of in-

terstitials and vacancies were found to be attractive for inter-

or interstitial, e.g., whether the defect sits in an environmenstitials and repulsive for vacancies.

which is two-, three-, or sixfold symmetric. If thermal fluc-

To determine the correct type of microscopic defect to

tuations out of this configuration are small enough to beinsert into the phenomenological considerations of Secs.
described within a quadratic approximation, they decoupldll-V, we have extended the work of Frey al. to the short-

from the equilibrium configuration. Since the$e=0 equi-

ranged regime of th&y(«r) interaction, to which end we

librium defect configurations are composed of straight col-studied values okay from 0 to 7 (7 being large enough to
umns, the three-dimensional deformation energy can be reepresent the short-rangea,—oo limit) (Fig. 10. The aim
duced to an effective two-dimensional interaction energywas to determine the point of crossover from centered inter-
V(r) per unit length between columns separated by distancstitials to vacancies as the lowest-energy defect, since it is
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FIG. 11. Defect energy as a function of the povgefor V(r) FIG. 12. Defect energies fov(r)=Kq(«r), n=4, on the log

=1/rP at system sizm=5 (N=750). The apparent increase in scale, with respect to g/(_)r Vg, in order to illustrate the det_ailed
energy withp (interaction getting shorter rangediould go away structure OT the energy diagram. The Cl can be seen crosyjreg V
with proper normalization of the potential. Lines joining the data <@~ 6-9. Lines joining the data points are only an aid to the eye.
points are only an aid to the eye.

. . . . system to its original densityfollowing Ref. [19]). More-
known from simulations of short-range interactioffier 8 e since we would ideally like to study an infinite system,
review, see Ref[20]) that vacancies are preferred in this the large but finite cell containing 88 particles is assumed

!|m|t. In_the same Sp'lm’ we have_ alsoi?xyehnded the Cou:omqo be repeated in all directions, so that we are effectively
Interaction to power-law interactionsrt/with exponent val- dealing with a periodic array of defects, or an infinite lattice

ues ranging fronp=0 (~Inr) to p=12 (Fig. 11). in the absence of a defect. The periodic boundary conditions

We checked our minimization procedure by first repro-painiain the average line density during the relaxation pro-
ducing the results of Ref$2] and[19] for Inr and 1f po-  as5 However, now the energy per cell also includes the

tentials, respectively. As we move away from the long-rangeynergy of interaction of a defect with all its periodic images.

interaction limit ka=0, the metastable crushed vacancy zg giscussed earlier, this energy is finite, and by extrapolat-
(V2q) exchanges stability with the metastable split vacancyq its dependence on cell sizei.e., interdefect separation

(SV), also of twofold symmetry. Two metastable species, & ~5n), to largen, the energy of an isolated defect can be
threefold symmetric vacancy gY and a two-fold symmetric extracted 2,19].

vacancy (i) crushed along the basis vector of a triangular  £or short-ranged interactions, the energy calculation can
unit cell, also exist, but are of higher energy. The differencegye gimplified. We introduce a cutoff interaction radius

in energy can be as small as one part in a few thousand. Ajpere the interaction falls to a small fraction of its nearest-
the interaction gets shorter rangedy,\oses stability ©0 ¥ peighbor value. The interaction with the particles outside can
at xa,=5.2, and the threefold deformation ofsVgets  pe approximately accounted for by assuming a uniform den-
smaller so that it transforms continuously intq ¥t k@, ity outside and integrating over it. The radiyss chosen to
=5.9. When \} appears, the SV also loses stability to it. By make this correction small compared to the total energy, say,
the time & and V4 finally cross in energy, ¥is the only  |ess than 102 of it. Interactions within the shell are calcu-
stable vacancy left. The crossing happen; at surprisinglysieq explicitly. As long as.<L/2, L being the cell width,
large parameter valuessap=6.9 for V., (Fig. 12, and  thjs short-range method should be very accurate.

p=5.9 for V, (Fig. 13, each very close to the short-range  For jong-ranged interactions such as I, or 142, the
limit. We thus find that the interstitial has a very wide range

of stability, extending well into the short-ranged regime.

Following previous authors, the simulations were per- V(@) = 1/1°

=] 0.04 «
formed in an almost squaréength-to-width ratio 5:33) Zm
cell containing N=5nx6n=30n? lattice points with n >° 0.03 4
=1-5 [rather than a more nearly square but bigger rect- g
angle of, say, Ax8n (7:4y3), which would allow us to %% 002 +
sample a smaller number of system sizesvith a given ° i
computational limit onN]. Figure 9 corresponds to= 3. 22 0.01 1
A defect is introduced by adding or removing a particle, § § \\
and then allowing the resulting configuration to relax. The & 0x ¥ =%
difference between the energies of the relaxed defect con g /1 2 3 4
figuration and the perfect lattice configuration gives the en-8 %' power law p
ergy of the defect. There are two modifications to this simple sz

calculation. We want the defect energy corresponding to the
physical conditions of constant chemical potential or line FIG. 13. Defect energies faf(r)=1/r?, n=5, on the log scale,
density, so we rescale the cell dimensighg changing the with respect to \ or V. The Cl and \ cross atp~5.9. Lines
lattice constanfyy) after inserting the defect to restore the joining the data points are only an aid to the eye.
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TABLE |. Defect energies fol(r)=Kgy(kr); apg=1; system sizen=4 (N=480). The upper part
corresponds to the Ewald sum method for long-range interactions, the lower part to a simple cutoff method
for short-range interactions. The centered interstitial and the symmetric vacancy cress @19. Entries

such as “\éay” “SV,” “\/

3, and “Vg” indicate an instability to a lower-energy defect.

xa I3 sV Va A Vap Ve

0 0.073016802 A 0.107018876  0.108206944  0.109320135 5 V

1 0.066331581  0.096728537 0.096661116 0.097578530  0.099169907 5 V
2 0.050588818  0.072306827 0.072341149 0.072594220 0.073852944 5 V
3 0.033575192  0.046095915 SV 0.046131759  0.047174061 5 V
4 0.020037313  0.025980648 SV 0.025962421  0.026641900 5 V
4 0.020036 0.025980 sV 0.025961 0.026641 s V

5 0.0110170  0.0133112 sV 0.0133146  0.0136217 Y

5.1  0.010338333 0.012397139 sV 0.012400742  0.012674362 5 V
52  0.009695442  0.011537972 sV 0.011541059 5 V A

5.3  0.009087036 0.010731274 SV 0.010733113 5 V Vs

5.4  0.008511788  0.009974612 sV 0.009974441 5 V Vs

55  0.007968369  0.009265581 sv 0.009262603 5 V Vs

5.6  0.007455456 0.008601808 sv 0.008595187 5 V Vs

5.7  0.006971737  0.007980968 sv 0.007969812 5 V Vs

5.8  0.006515917  0.007400791 sV 0.007384121 v Vs

59  0.006086722 y Ve Ve Ve 0.006835768
6 0.005682901 v Ve Ve Ve 0.006322377
7 0.002788486 v Ve Ve Ve 0.002771295

above method breaks down, and we must resort to the Ewalkbaces, with values determined by the desired precisiea

summation techniqui21,22, which yields an effective two-
particle interaction that includes the interaction of one par-

Appendix C for details
To find the minimum of the interaction energy as a func-

ticle with all the periodic images of the other. This effective tion of the configuration oN particles, we use the conjugate-
potential consists of a real space s@oorresponding to a gradient method23]. The forces are also needed for this

screened interactignand a reciprocal space sufgorre-

sponding to the screening chajg&he division between the niently calculated along with it.
two is controlled by an Ewald parameter, and by a judicious The results forn=4 (480 particles for V,, and forn

choice of its value, the interaction can be made sufficiently=5 for V, (750 particles are shown in Tables and | and Il
short ranged for both sums. We then employ cutoffs in botrand Figs. 10 and 11nE5 was computationally prohibitive

method, and are easily derived from the energy and conve-

TABLE II. Defect energies foN(r)=1/rP; ag=1; system sizen=5 (N=750). The Ewald sum tech-
niqgue was used to calculate the energies. The centered interstitial and the symmetric vacancy ross at
~5.9. Entries such asV;” and “ V" indicate an instability to a lower energy defect.

p I3 SV Vaa V3 Vap 5

0 0.073061685 Ya 0.106775085 0.108253779 0.108994418 3 V
1 0.146421440 Ya 0.209046876 0.209331872 0.213568209 3 V
2 0.487928019 0.677444176 SV 0.672359275 0.694143882 sV
3 1.08543992 1.39071722 SV 1.38704618 1.42628053 3 V
4 1.99663790 2.37494467 SV 2.37649196 2.43341170 3 V
5 3.2620983 3.5889518 SV 3.5851010 3V Vs

58  4.5498400 vV Ve Ve Ve 4.6053332
59  4.7286554 v Vg Ve Ve 4.7341340
6 4.9114956 ¥ Vg Vg Vg 4.8637723
7 6.9642383 v Ve Ve Vg 6.1999848
8 9.4317462 ¥ Ve Ve Ve 7.5920876
9 12.319586 v Vg Vg Vg 9.0220754
10 15.629229 v Ve Ve Vg 10.477581
11 19.359421 v Ve Ve Vg 11.950259
12 23.495660 v Vg Ve Vg 13.434556
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for the long-ranged regime witkay>0). Note that, for the

screened Bessel function interaction, we find that calcula-
tions optimized for the long- and short-ranged regimes agree

to within 1 part in 20 000 akay,=4. Moreover, we find that
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ry—rg

W(r, ,z)cIn|r, —rgyl, or u(r, ,z)= >
ro—rgl

(A3)

the interaction of a defect with all its periodic images is With proportionality constant-ag.

repulsive for defects witlieven two- and sixfold symmetry,

Now consider a wandering string with a dilute concentra-

and attractive foodd) threefold symmetry, consistent with tion of kinks, described on average lby(z) (see Fig. 1

Ref. [2]. As discussed in Refs[2] and [19], the true

Upon inserting thisz dependence into the right hand side

asymptotic form of the power-law defect interaction prob-(RHS) of Eq. (A2), we see that the resulting inherits the

ably is not reached for the distance scales20— 30 lattice
spacings studied here.

VII. CONCLUSIONS

fluctuations ofr 4(z). If I, represents the smallest wavelength
in ry(z), the two terms on the LHS of E4A2) compare as
N2/1% vs 1k3, or asl* vsl, wherel* = |\ a, is of the order
of the kink length. Since the meandering of the defect string

_ o _ occurs on a length scale much larger than the kink size, the
We have studied factors contributing to the wandering offirst term should be negligible compared to the second, and
a vacancy or interstitial string defect in a hexagonal columye can set

nar crystal. A gas of such strings in the crystalline phase,
interacting via short-range potentials, can proliferate via con-
tinuous or first-order transitions when the corresponding de-
fect chemical potential changes sign, leading to a supersolids a reasonable approximation.
phase. The transition can be modified by the presence of The elastic energy of a defect of lengthcan now be
vacancy or interstitial loops, especially in a system of finitewritten as
thickness. We have also numerically calculated defect line
1 ' 9u\?
+ > f rks Py
(AS5)

Y(ro,2)nlr, —rq(2)] (A4)

dry(2)
dz

late between long- and short-ranged interaction potentials. In Egefece 7L + &k
each case, we determine the point where interstitial and va-
cancy defects exchange stability. A complete accounting re-

quires consideration of a variety of nearly degenerate va- i tributi ¢ line tensi Kink dth
cancy configurations. At finite temperatures, the small €Présenting contributions from fin€ tension, Kinks, an €

energy differences between different species will furthelbe!1ding energy of the distorted crystakro for a straight

lower the free energy of the vacancy through a gain in quC_strlng). The primed integral here excludes the core of the

tuation entropy. The interstitial itself can fluctuate betweerStiNg: @ region of radius-a, around it. It can easily be
valuated foru(r,z)=uq(r, —r4(2),z) and reduces to the

the centered and edge configurations. The point where v ; ) X
d d b orm in Eqg. (3.7), accurate up to fourth order in the deriva-

cancies and interstitials exchange stability will shift at finite . . q he other hand. lead h
temperatures due to entropic effects of this kind. In the conllVeS- The second term, on the other hand, leads to the term

2 .
text of long-range potential calculations, we show in Appen-(9/2)JdZ|drq/dz|* in Eq. (3.4). For long wavelengths, the

dix D how to extend the Ewald summation to the modifieg@dditional contribution from the third term is irrelevant in
Bessel function potentidf (). comparison, being of higher order in the derivatives. The

length scale at which it becomes important is obtained by
balancing the two terms<3/I2~T/D/IZ, or | ,~JK3D/T.

tensions for two families of line interactions which interpo- f dz

Qp
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APPENDIX B: RENORMALIZATION
OF D BY DEFECT-PHONON COUPLING

In Sec. Il we described the wandering of a defect line

along thez axis by a “diffusion” constantD = aénklz, cor-
responding to an effective HamiltonidiEq. (3.4)] Hyefect
=(9/2)fdzdrq/dZ?, ryq(z) describing the in-plane position
of the defect string, wittg=T/D. To incorporate the effect
of lattice fluctuations on the diffusion of the defect string, we
mOdify Hdefectt0

APPENDIX A: CALCULATION OF ENERGY
OF DISTORTION DUE TO A DEFECT STRING

As described in Ref.13], minimization of the free energy
(2.1) with the constrain{2.6) yields the following equation
for u(r, ,2):

2

(A1) . (B

No*tu—V (V ~u)=iV S(r —ryq)
LYz 1 1 Po 1 1 d/»

+drd
_E‘Ft(rd,Z)

g
Hdefec&phononzzf dz

rq being the in-plane location of the defect strit@gsumed
straight for now. Upon assuming a solution of the form
=—(1/py)V . ¢, we have the scalar equation

where the expression in brackets now represents the devia-
tion of the vacancy or interstitial string with respect to the
local director

(—\2a3+V2)p=5(r, —rg). (A2)

t

Ju
For the straight string, the solution is 9z (B2)
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G(k)=Go(k)+Go(k)f ik"-t(k—k")Gg(k")
k/

+Go(k)fk,ik’-t(k—k’)Go(k’)

xf ik” (k' —K")Gg(K") + - - - (B9)
kl/

- S,

To calculate the thermal averages of product$-ef-iwu,

-
,*

N ) we need
f— (ua(k))=0,
= (Ua(K)ug(k ) =[SL(K)PLa(K) +Sp(k) P 5(K) ] 8@ (k— k")
p— (B10)
FIG. 14. lllustration of the coupling between a defect string and ESaﬁ(k)é(E’)(k— k'), (B11)

the lattice distortion. In this case, the change in the position of the
vacancy string(thick dashed curveis equal and opposite to the \yhere the correlation functions parali¢l) and perpendicu-
change in the phonon displacement field. lar (T) to k are

Figure 14 illustrates the case of a vacancy string, which we

shall assume for the remainder of this appendix. SurK)=————; (B12)
It is easy to derive the diffusion equation for the partition Kzw+C1ye

function Z(ry,ry;2,0) corresponding to the above Hamil-

tonian[the{u(r, ,z)} dependence i€ has been omitted for

conveniencg

and the projection operators arE';lB(k)=kakB/k2 and
Pla(K)= 8,5~ Pp4(K). Therefore

d,2—(t-V,)Z=DV} Z. (B3) (G(K))=Gq(k) — Go(k) fk/kak;wzsaﬁ(k—k’)

Z represents the probability density for the defect position;
—1 is the “convective velocity” for this density. It can also X Gy(k')
be thought of as afimaginary vector potential acting on a 0
particle of massy in two dimensions, withz the timelike
coordinate. Diagrammatically, this series is represented in Fig. 15. All

Defining the propagatoG(r, ,z)=Z(r, ,2)6(z), 6(2) diagrams of typgb) and (c) reducible to the one-loop dia-
being the step functiorG obeys gram (b) can be summed to givéG(k)) 1~Gy(k) !

5 , +V(k) whereV(k) is the term in square brackets in Eq.
(0,~DV)G(r, ,2)=6®(r)8(z2)+t-V.G. (B4  (B13). Then,Dg=D+ Dy where

Go(K)+- - -. (B13)

The bare propagatds, corresponds to ignoring the convec- 1,
tive influence of the medium. Thu§, satisfies 6Dr=~ lim 5 ViV(k). (B14)
k—0
(3,—DV?)Go(r, ,2)=569)r). (B5) _ _ - _ _

‘ LI With the assumption\ ,tD?a, 3<1, in other words, kink
Fourier-transformingr, —k (spacelik¢ and z—w (time-  sizel*<l,, the kink separatiorDr can be evaluated to
like), give

Go(k,w)=(—iw+Dk?) 1. (B6) 6Dg T ( 1 1 ) A2

— | | ——, (B15)
The renormalized diffusion coefficieftg will be calculated D k¥ ¥ 20y27

from the average o6 over the phonon degrees of freedom

using the definition where we have imposed a cutoff by replacing the hexagonal

Brillouin zone by a circle of radius =4//3a, which has

G(k,w) t=—iw+Dgk? (B7)  the same area. tfgz<c,;, the fluctuations are mostly trans-
. - ) verse, and
in the limit |k|,o—0. Upon denotingk=(k, ), Eq. (B4)
becomes Dgr  (Jul®) 4w
~— . (B16)
D a3 53

Ggl(k)G(k)=1+fIik’~t(k—k’)G(k’). (B8)
“ Since(|u|?)/a=c?, where the Lindemann ratio for hexago-
The symbolf, denotesfd3k/(2)%. Equation(B8) can be  nal columnar crystalline lattices is empirically known to be
expanded in a perturbation series: c2=1/50[16], we find 6Dg/D<3%.
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——

+

©) Forr,,/d>1, the leading term in the interaction comes from
the convolution of thes function with thek=1 term (in
other words, this is the cost of the volume change produced
*r o 1) by one defect in the stress field of the othénerefore it is of
the form cos6;,/r 5",
Specifically, we find for vacancie@he sign is reversed

* > %> 4> @) for interstitial9
n Relative orientation U(r,) (units of KQ/d?)
+
—CO0s Y+cos ¥
2 parallel s
(r/d)?
average . —2cos H+cos 4
2 perpendicular -
RN 3 parallel “8cos@
+ —>———>>—>— () (r/dy*
e . PR . —2cos¥ 3cos&
+ Iy vy F 5y by () 3 antiparallel —+ n
(r/d) (r/d)
e T 5 —~2cos®
+ > > > > > (d) (r/—d)ﬁ
+

FIG. 15. Diagrammatic representation of the series expansion of
the propagator for the defect probability density. The average is
over the phonon degrees of freedom.

APPENDIX D: EWALD SUM FOR V(R)= Ky(xR) AND
1URP

Let ¢(r) be the two-body interaction potential between
APPENDIX C: INTERACTION BETWEEN DEFECTS WITH chargesq; in the given system so that the total interaction

n-FOLD SYMMETRY

energy is
We assume the defect string to be straight, so that only the 1
planar elastic deformation energy,siai (EQ. 2.3 is rel- U=— EE qiq (ri). (D1)
evant. In the continuum model discussed, this energy is iso- 2 G4 T

tropic in the straingy;; . The stressrij = 6F¢,ystal/ OUj; can . _ _ _
be expressed in terms of a biharmonic stress funggifip4], ~ The simulated system consists f particles in a cell re-
vafxzo, asoi; = i€ ddix (&; is the two-dimensional peated to generate an infinite system. Then the energy per

antisymmetric tensor;,=1). cell can be written as

For a dislocation with Burgers vectorb, x L N
=—KZz- (bXr )Inr,, where K=u(A+u)/m(A+2u) in U=U. += Qv (re D2
terms of the Lameoefficients. 0,75 EH&JZ qi0;Valrij), (D2)

We constructy for ann-fold symmetric vacancy or inter-
stitial by treating it as a superposition of dislocations Where[21]
(bound symmetrically placed a distanak~a, apart(such
that the volume of the defect {8 ~nda,), with Burger vec- v (r--)=2 [b(rii+n)— g (r+n)]
tors separated by 72/n in orientation. The resulting stress oy n . al
function has a form satisfying

1
T3 2 DG, (D33
1 <«  cosknd G

>,

a ————
d2 &1 7 (r sk

Vix= KQ( 278(r ) — (C1)

I r—0

1 2\
Uo,=5| 2 af|lim[vy(—g¢(n)]. (D3
wherea, are coefficients oD(1).

The interaction energy of two such defects, located,at Here the sum oven consists of all real space lattice vectors
andr,, respectively, can be written in terms of their stressof the |attice generated by a cell of ardaand the sum over
functions as G goes over the corresponding reciprocal lattice vectors. The

lattice is rectangularfalmost squanein our case, which

B 1 o 2 ) makes it easy to list these vectors, is the long-range part
UndT12=T o= 1) = [ AT VIX(r =r)Vix(r =T2). of the interactiond, so thaté—, is a screened, short-
(C2 ranged interactiony,, is the Fourier transform. The amount
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of screening is controlled by the Ewald parametenf we _ aP
take « to be large enough so that the real space sum can be limio(r)= F(p/2+ 1)’ (D1))
truncated atr.=L/2 within the desired precision, then we r—0
can drop the sum over+#0 [25]. However, this means in-

. i . . 2 pdi2,p—d
cluding more short-range components in the screening Imy (k= T % g (D12)
charge distribution, so that it spreads to higher reciprocal k'ino%( “p—d T(p/2) ’ p=d.

vectors. The cutoff in reciprocal space is again determined
by the precision required. . .~
Since we shall be consideriry particles, each witry, ~ ~°F P=d. the above expression correspc.)nds tolisgl .,
=1, we haveZ;g’=N and (£,q;)>=N?. Rearranging the (k) = ¢(Kk)]. Forp=d, both forms would diverge; however,
sums inU and noting thatN/A=p, which is constant f[hey vyould be mdepend_ent ozf,_ and since the defect energy
throughout the calculation, we can rewriteas is a difference of energies, this term would cancel out.
The force on particlg, f;=—V;U, can also be written as

U=Uett+Ujpy, (D4)  asum of real space and reciprocal space contributions:
where[21,25
fi=> R+, (D133
N 1#]
1 ~
Uine= 2 20 (1) = (1) 1+ 55 2 Wa(G)
i<j G where
S [ snen
X cosG-r;| + sinG-r;| |, (D5a I'(p/2+ 1 ar;)?
i ' i ') } fR=2 (p rp+(2 1)) i (D13b)
i]
N . N
Urer~— 5 lim o (r) +5 plim ¢,(k). (D5b)  js the sum of forces on particjedue to particld and all its
=0 k=0 images, and
Note thatU,.; is explicitly proportional toN in this form.
This is the form we use in our calculations. For interactions fG:E E D.(G) 2 cosG-r |sinG-r.
whose long-range integral divergésuch as P with p oA T i ' !
=<2), a uniformly spread background of equal and opposite
charge is assumed, so that the second terd,in should _ E sinG-r)cosGr- G (D139
contain i ' !
lim [, (k) —b(k)]. (D6) is the sum of forces on particjedue to all images of itself.
k=0 The coordinates here are normalized such thag=1.

When we changeN to Ng=N=*=1 and rescalea; to a
=./N4/N after inserting a defect, we chose to keepor-
malized with respect ta, so that it picks up a factor &. If
o ) we also scalex by 1/a, the productar remains unchanged
f dt tP2te—tr", (D7) (as doess-r), so that we can keep using the original values
0 of « andG in U;,; andf, and scale the result byd? in the
end. InU,.; we have to use the scaled valueaoélong with
Ng4, and subtract the energy of the perfect lattice scaled by
. 2 Nd /N
,/,a(r):Lf dt tP2- 1e*"25i m On the other hand, if we do not scaleU,.s cancels out,
I'(p/2) ) o2 e T(p/2) but « has to be replaced bya in U;,; andf.
(D8) For the modified Bessel function interaction

We can now proceed to the special potentials we are in
terested in. For the power-law potential

1

o(r)=1IrP= (/2

we take[26]

so that the screened interaction is
(r)=Ko(xr) (D14

1 y(p/2(ar)? -
d(r)— i (r)=— M_ (D9)  (wherek representsca because of the normalization of,
P T(p/2) the k=0 case, corresponding te(r)~—Inr, has been
. . treated by Fret al.[2]. To extend this toc>0, we perform
(I" and y are complementary incomplete Gamma functions,y exnansion similar to that of Silva and Mokrg&s] for a
[27]) i i Yukawa potential. Writing the potential in integral form,
The Fourier transform isd=2)
~ w92 [2\97P [d—p [ k \? _ _ 1 (=dt —to— (kr)2/at
- = Ly d(r)=Ko(xr)=5 | —e'e . (D1Yy
0= | k) F{ 2 '(2a) } (010 2Jot

Also, we choose the screened interaction to be
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_ 1 Jw dt -t —(Kr)2/4t li _ 1 E K ? D20
()= da(r)=5 (ar)ZTe e rml//a(r)—z 11 55] | (D20)
1 (=ds 2 2
| 2o (an)?sa—(kl2a)?(Lhs)
2 )1 s € © - (01§ At k=0 we take
Expanding the exponential within the integral in a Taylor
series abouk=0, we get o ~ T
lim lim[¢,(k)—¢(k)]=— — (D21)
1.4 (=) k|2 k=0 k=0 2a
— — _ 2
(D170  Also,
where E,(X) is the exponential integral functigrg,, . 1(x)
=x"T"(—n,x)]. lim i, (r)~—y2+Ina—In(x/2)+O(x?). (D22

For k=0, only the first termE,((ar)?), is nonzero. For r—0
x>0 we have an alternating series, and its convergence has
to be taken into account in determining the optimum value o

o (in addition to the required precision and the cell siZor f'I'he Ink term cancels in the defect energy, so that the limit

large values of«, not only are a large number of terms x—0 is again well defined. Similarly, if we did not subtract

needed in this series to reach the desired precision, the optiMk—o #(K), we would have an extra termn «?, which
mum value ofe is also large due to convergence rquire- {00 would cancel out. o
ments, increasing the cutoff in reciprocal space, so that the The expression for the force is similar to Eq913)
computation time increases dramatically. We were able tvhere fij is a series similar tog(r)—i,(r), with each
carry this calculation toc=4, where it matched the results En+1((ar)?) replaced by 2°E,((ar)®r. On scaling,
from the short-range method to 1 part in 20 000. ¥,(K) has to be recalculated because it does not simply scale
We also need the following quantitiésm d=2): as a power law.
The special functions used here were all calculated to an

2.2 2 A .
g (HKD/(2a) accuracy of 10'® according to routines taken from Ref.

Yo(K)=2m 2k (D18) [23]. Since the power-law calculations were mostly carried
out on integral values qgb, the gamma functions were only
o ngeded for. integral_ or half-integral orders, in which case cer-
lim Tpa(k):—ze‘("’z‘“)z, (D19)  tain recursion relations can be ud@9]. We used the fastest
k—0 K method for each order.
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